1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
/*
This file is part of PolyLib.
PolyLib is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PolyLib is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PolyLib. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* $Id: matrix_permutations.c,v 1.8 2006/10/01 02:10:46 meister Exp $
*
* Permutations on matrices Matrices are seen either as transformations
* (mtransformation) or as polyhedra (mpolyhedron)
* @author B. Meister
* LSIIT -ICPS
* UMR 7005 CNRS
* Louis Pasteur University (ULP), Strasbourg, France
*
* Permutations are just indirection vectors: the k^th element of a permutation
* vector is the position of the k^th variable in the permuted object.
*/
#include <stdlib.h>
#include <polylib/matrix_permutations.h>
/** utility function : bit count (i know, there are faster methods) */
unsigned int nb_bits(unsigned long long int x) {
unsigned int i,n=0;
unsigned long long int y=x;
for (i=0; i< 64; i++) {
n+=y%2;
y>>=1;
}
return n;
}
/** Gives the inverse permutation vector of a permutation vector
* @param perm the permutation vector
* @param
*/
unsigned int * permutation_inverse(unsigned int * perm, unsigned int nb_elems) {
int i;
unsigned int * inv_perm = (unsigned int *)malloc(sizeof(unsigned int) * nb_elems);
for (i=0; i< nb_elems; i++) inv_perm[perm[i]] = i;
return inv_perm;
}
/**
* Given a linear tranformation on initial variables, and a variable
* permutation, computes the tranformation for the permuted variables. perm is
* a vector giving the new "position of the k^th variable, k \in [1..n] we can
* call it a "permutation vector" if you wish transf[x][y] ->
* permuted[permutation(x)][permutation(y)]
*/
Matrix * mtransformation_permute(Matrix * transf, unsigned int * permutation) {
Matrix * permuted;
unsigned int i,j;
/* the transformation is supposed to be from Q^n to Q^n, so a square matrix. */
assert(transf->NbRows==transf->NbColumns);
permuted = Matrix_Alloc(transf->NbRows, transf->NbRows);
for (i= 0; i< transf->NbRows; i++) {
for (j= 0; j< transf->NbRows; j++) {
value_assign(permuted->p[permutation[i]][permutation[j]], transf->p[i][j]);
}
}
return permuted;
}
/** permutes the variables of the constraints of a polyhedron
* @param polyh the constraints of the polyhedron
* @param permutation a permutation vector
*/
Matrix * mpolyhedron_permute(Matrix * polyh, unsigned int * permutation) {
unsigned int i,j;
Matrix * permuted = Matrix_Alloc(polyh->NbRows, polyh->NbColumns);
for (i= 0; i< polyh->NbRows; i++) {
value_assign(permuted->p[i][0], polyh->p[i][0]);
for (j= 1; j< polyh->NbColumns; j++) {
value_assign(permuted->p[i][permutation[j-1]+1], polyh->p[i][j]);
}
}
return permuted;
}
/** permutes the variables of the constraints of a polyhedron
* @param C the original set of constraints
* @param perm a permutation vector
* @param Cp (returned) the set of constraints whose variables are
* permuted. Allocated if set to NULL, assumed to be already allocated if not.
*/
void Constraints_permute(Matrix * C, unsigned int * perm, Matrix ** Cp) {
unsigned int i,j;
if ((*Cp)==NULL) {
(*Cp) = Matrix_Alloc(C->NbRows, C->NbColumns);
}
else {
assert((*Cp)->NbRows == C->NbRows && (*Cp)->NbColumns==C->NbColumns);
}
for (i= 0; i< C->NbRows; i++) {
value_assign((*Cp)->p[i][0], C->p[i][0]);
for (j= 1; j< C->NbColumns; j++) {
value_assign((*Cp)->p[i][perm[j-1]+1], C->p[i][j]);
}
}
} /* Constraints_permute */
/** Given a set of <i>equalities</i>, find a set of variables that can be
* eliminated using these equalities. The variables that we agree to eliminate
* are in a zone of contiguous variables (or parameters). <p>
* Notes:
<ul>
<li>brute force, surely enhanceable algorithm</li>
<li>limited number of variables in the zone: limit = bitwidth of long long
</ul>
* @param Eqs the matrix of equalities.
* @param start the rank of the first variable (inclusive) of the zone in Eqs
* @param end the rank of the last variable (inclusive) of the zone
* return a bitfield where bits set to one define the variables to eliminate
*/
unsigned long long int eliminable_vars(Matrix * Eqs, unsigned start,
unsigned end) {
unsigned long long int combination;
unsigned int i,j,k;
Matrix * M, * H, * Q, *U;
Matrix * Square_Mat, *Eqs2;
unsigned nb_vars = end - start + 1 ;
Polyhedron * OverConstrained;
assert (start>0 && end < Eqs->NbColumns-1);
/* if the affine hull is overconstrained, return 0 */
if (Eqs->NbRows >nb_vars) {
/* FIXME: there is a magic maximum number of rays here */
Eqs2 = Matrix_Copy(Eqs);
OverConstrained = Constraints2Polyhedron(Eqs2,
Eqs->NbColumns*Eqs->NbColumns);
Matrix_Free(Eqs2);
if (emptyQ(OverConstrained)) {
Polyhedron_Free(OverConstrained);
return 0;
}
Polyhedron_Free(OverConstrained);
}
/* do not accept 0 = 0 equalities */
for (i=0; i< Eqs->NbRows; i++) {
assert (!Vector_IsZero(Eqs->p[i], Eqs->NbColumns));
}
Square_Mat= Matrix_Alloc(Eqs->NbRows, Eqs->NbRows);
/* There are Eqs->NbRows variables to eliminate.
Generate all the combinations of Eqs->NbRows variables (-> bits to 1 in
the word "combination") among nb_vars WARNING : we assume here that we
have not more than 64 variables. You may convert it to use GNU MP to
set it to an infinite number of bits
*/
for (combination = ((unsigned long long int) 1<<(Eqs->NbRows))-1;
(combination < ((unsigned long long int) 1 << nb_vars)) ;
combination++) {
if (nb_bits(combination) == Eqs->NbRows) {
k=0;
/* 1- put the m colums in a square matrix */
for (j=0; j< nb_vars; j++) {
if ((combination>>j)%2) {
for (i=0; i< Eqs->NbRows; i++) {
value_assign(Square_Mat->p[i][k], Eqs->p[i][j+start]);
}
k++;
}
}
/* 2- see if the matrix is full-row-rank */
right_hermite(Square_Mat, &H, &Q, &U);
Matrix_Free(Q);
Matrix_Free(U);
/* if it is full-row-rank, we have found a set of variables that can be
eliminated. */
if ( value_notzero_p((H->p[Eqs->NbRows-1][Eqs->NbRows-1])) ) {
Matrix_Free(Square_Mat);
Matrix_Free(H);
return combination;
}
Matrix_Free(H);
}
}
Matrix_Free(Square_Mat);
return (unsigned long long int) 0;
} /* eliminable_vars */
/**
* finds a valid permutation : for a set of m equations, find m variables that
* will be put at the beginning (to be eliminated).
* Note: inherits the limited the number of variables from
* <i>eliminable_vars</i>
*/
unsigned int * find_a_permutation(Matrix * Eqs, unsigned int nb_parms) {
unsigned int i, j, k;
int nb_vars = Eqs->NbColumns-nb_parms-2;
unsigned long long int combination;
unsigned int * permutation = (unsigned int *)malloc(sizeof(unsigned int) *
Eqs->NbColumns-1);
/* 1- find a set of variables to eliminate */
if ((combination = eliminable_vars(Eqs, 1, nb_vars)) == 0) {
/* if it is impossible to eliminate enough variables, return error code */
return NULL;
}
/* 2- make the permutation matrix
* a- deal with the variables */
k=0;
for (i=0; i< nb_vars; i++) {
/* if the variable has to be eliminated, put them at the beginning */
if (combination%2) {
permutation[i] = k;
k++;
}
/* if not, put the variables at the end */
else permutation[i] = Eqs->NbRows+nb_parms+ i-k;
combination>>=1;
}
/* b- deal with the parameters */
for (i=0; i< nb_parms; i++) {
permutation[nb_vars+i] = Eqs->NbRows+i;
}
/* c- deal with the constant */
permutation[Eqs->NbColumns-2] = Eqs->NbColumns-2;
return permutation;
} /* find_a_permutation */
/** computes the permutation of variables and parameters, according to some
* variables to keep. put the variables not to be kept at the beginning, then
* the parameters and finally the variables to be kept. strongly related to
* the function compress_to_full_dim2
*/
unsigned int * permutation_for_full_dim2(unsigned int * vars_to_keep,
unsigned int nb_keep,
unsigned int nb_vars_parms,
unsigned int nb_parms) {
unsigned int * permutation =
(unsigned int*)malloc(sizeof(unsigned int) * nb_vars_parms+1);
unsigned int i;
int cur_keep =0, cur_go = 0;/*current number of variables to eliminate/keep*/
for (i=0; i< nb_vars_parms - nb_parms; i++) {
if (i==vars_to_keep[cur_keep]) {
permutation[i] = nb_vars_parms-nb_keep+cur_keep;
cur_keep++;
}
else {
permutation[i] = cur_go;
cur_go++;
}
}
/* parameters are just left-shifted */
for (i=0; i< nb_parms; i++)
permutation[i+nb_vars_parms-nb_parms] = i+nb_vars_parms-nb_parms-nb_keep;
/* contants stay where they are */
permutation[nb_vars_parms] = nb_vars_parms;
return permutation;
} /* permutation_for_full_dim2 */
|