File: matrix_permutations.c

package info (click to toggle)
polylib 5.22.5-4.2%2Bdfsg
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 14,464 kB
  • sloc: ansic: 16,346; sh: 10,134; makefile: 506
file content (281 lines) | stat: -rw-r--r-- 9,386 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/*
    This file is part of PolyLib.

    PolyLib is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    PolyLib is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PolyLib.  If not, see <http://www.gnu.org/licenses/>.
*/

/** 
 * $Id: matrix_permutations.c,v 1.8 2006/10/01 02:10:46 meister Exp $
 *
 * Permutations on matrices Matrices are seen either as transformations
 * (mtransformation) or as polyhedra (mpolyhedron)
 * @author B. Meister
 * LSIIT -ICPS 
 * UMR 7005 CNRS
 * Louis Pasteur University (ULP), Strasbourg, France 
 * 
 * Permutations are just indirection vectors: the k^th element of a permutation
 * vector is the position of the k^th variable in the permuted object.
 */

#include <stdlib.h>
#include <polylib/matrix_permutations.h>

/** utility function : bit count (i know, there are faster methods) */
unsigned int nb_bits(unsigned long long int x) {
  unsigned int i,n=0;
  unsigned long long int y=x;
  for (i=0; i< 64; i++) {
    n+=y%2;
    y>>=1;
  }
  return n;
}


/** Gives the inverse permutation vector of a permutation vector 
 * @param perm the permutation vector
 * @param 
*/
unsigned int * permutation_inverse(unsigned int * perm, unsigned int nb_elems) {
  int i;
  unsigned int * inv_perm = (unsigned int *)malloc(sizeof(unsigned int) * nb_elems);
  for (i=0; i< nb_elems; i++) inv_perm[perm[i]] = i;
  return inv_perm;
}
  

/**
 * Given a linear tranformation on initial variables, and a variable
 * permutation, computes the tranformation for the permuted variables.  perm is
 * a vector giving the new "position of the k^th variable, k \in [1..n] we can
 * call it a "permutation vector" if you wish transf[x][y] ->
 * permuted[permutation(x)][permutation(y)]
 */
Matrix * mtransformation_permute(Matrix * transf, unsigned int * permutation) {
  Matrix * permuted;
  unsigned int i,j;
  /* the transformation is supposed to be from Q^n to Q^n, so a square matrix. */
  assert(transf->NbRows==transf->NbColumns);
  permuted = Matrix_Alloc(transf->NbRows, transf->NbRows);
  for (i= 0; i< transf->NbRows; i++) {
    for (j= 0; j< transf->NbRows; j++) {
      value_assign(permuted->p[permutation[i]][permutation[j]], transf->p[i][j]);
    }
  }
  return permuted;
}


/** permutes the variables of the constraints of a polyhedron 
 * @param polyh the constraints of the polyhedron
 * @param permutation a permutation vector
*/
Matrix * mpolyhedron_permute(Matrix * polyh, unsigned int * permutation) {
  unsigned int i,j;
  Matrix * permuted = Matrix_Alloc(polyh->NbRows, polyh->NbColumns);
  for (i= 0; i< polyh->NbRows; i++) {
    value_assign(permuted->p[i][0], polyh->p[i][0]);
    for (j= 1; j< polyh->NbColumns; j++) {
      value_assign(permuted->p[i][permutation[j-1]+1], polyh->p[i][j]);
    }
  }
  return permuted;
}


/** permutes the variables of the constraints of a polyhedron 
 * @param C the original set of constraints
 * @param perm a permutation vector
 * @param Cp (returned) the set of constraints whose variables are
 * permuted. Allocated if set to NULL, assumed to be already allocated if not.
 */
void Constraints_permute(Matrix * C, unsigned int * perm, Matrix ** Cp) {
  unsigned int i,j;
  if ((*Cp)==NULL) {
    (*Cp) = Matrix_Alloc(C->NbRows, C->NbColumns);
  }
  else {
    assert((*Cp)->NbRows == C->NbRows && (*Cp)->NbColumns==C->NbColumns);
  }
  for (i= 0; i< C->NbRows; i++) {
    value_assign((*Cp)->p[i][0], C->p[i][0]);
    for (j= 1; j< C->NbColumns; j++) {
      value_assign((*Cp)->p[i][perm[j-1]+1], C->p[i][j]);
    }
  }
} /* Constraints_permute */


/** Given a set of <i>equalities</i>, find a set of variables that can be
 * eliminated using these equalities.  The variables that we agree to eliminate
 * are in a zone of contiguous variables (or parameters).  <p>
 * Notes: 
 <ul>
 <li>brute force, surely enhanceable algorithm</li>
 <li>limited number of variables in the zone: limit = bitwidth of long long
 </ul>
 * @param Eqs the matrix of equalities.
 * @param start the rank of the first variable (inclusive) of the zone in Eqs
 * @param end the rank of the last variable (inclusive) of the zone
 * return a bitfield where bits set to one define the variables to eliminate
*/
unsigned long long int eliminable_vars(Matrix * Eqs, unsigned start, 
				      unsigned end) {
  unsigned long long int combination;
  unsigned int i,j,k;
  Matrix * M, * H, * Q, *U;
  Matrix * Square_Mat, *Eqs2;
  unsigned nb_vars = end - start + 1 ;
  Polyhedron * OverConstrained;

  assert (start>0 && end < Eqs->NbColumns-1);

  /* if the affine hull is overconstrained, return 0 */
  if (Eqs->NbRows >nb_vars) {
    /* FIXME: there is a magic maximum number of rays here */
    Eqs2 = Matrix_Copy(Eqs);
    OverConstrained = Constraints2Polyhedron(Eqs2,
					     Eqs->NbColumns*Eqs->NbColumns);
    Matrix_Free(Eqs2);
    if (emptyQ(OverConstrained)) {
      Polyhedron_Free(OverConstrained);
      return 0;
    }
    Polyhedron_Free(OverConstrained);
  }

  /* do not accept 0 = 0 equalities */
  for (i=0; i< Eqs->NbRows; i++) {
    assert (!Vector_IsZero(Eqs->p[i], Eqs->NbColumns));
  }
  
  Square_Mat= Matrix_Alloc(Eqs->NbRows, Eqs->NbRows);
  
  /* There are Eqs->NbRows variables to eliminate.
     Generate all the combinations of Eqs->NbRows variables (-> bits to 1 in
     the word "combination") among nb_vars WARNING : we assume here that we
     have not more than 64 variables.  You may convert it to use GNU MP to
     set it to an infinite number of bits 
  */
  for (combination = ((unsigned long long int) 1<<(Eqs->NbRows))-1;
       (combination < ((unsigned long long int) 1 << nb_vars)) ;
       combination++) {
    if (nb_bits(combination) == Eqs->NbRows) {
      k=0;
      /* 1- put the m colums in a square matrix */
      for (j=0; j< nb_vars; j++) {
	if ((combination>>j)%2) {
	  for (i=0; i< Eqs->NbRows; i++) {
	    value_assign(Square_Mat->p[i][k], Eqs->p[i][j+start]);
	  }
	  k++;
	}
      }
      /* 2- see if the matrix is full-row-rank */
      right_hermite(Square_Mat, &H, &Q, &U);
      Matrix_Free(Q);
      Matrix_Free(U);

      /* if it is full-row-rank, we have found a set of variables that can be
	 eliminated. */
      if ( value_notzero_p((H->p[Eqs->NbRows-1][Eqs->NbRows-1])) ) {
	Matrix_Free(Square_Mat);
	Matrix_Free(H);
	return combination;
      }
      Matrix_Free(H);
    }
  }
  Matrix_Free(Square_Mat);
  return (unsigned long long int) 0;
} /* eliminable_vars */



/** 
 * finds a valid permutation : for a set of m equations, find m variables that
 * will be put at the beginning (to be eliminated). 
 * Note: inherits the limited the number of variables from
 * <i>eliminable_vars</i>
 */
unsigned int * find_a_permutation(Matrix * Eqs, unsigned int nb_parms) {
  unsigned int i, j, k;
  int nb_vars = Eqs->NbColumns-nb_parms-2;
  unsigned long long int combination;
  unsigned int * permutation = (unsigned int *)malloc(sizeof(unsigned int) *
						      Eqs->NbColumns-1);

  /* 1- find a set of variables to eliminate */
  if ((combination = eliminable_vars(Eqs, 1, nb_vars)) == 0) {
    /* if it is impossible to eliminate enough variables, return error code */
    return NULL;
  }

  /* 2- make the permutation matrix
   *   a- deal with the variables */
  k=0;
  for (i=0; i< nb_vars; i++) {
    /* if the variable has to be eliminated, put them at the beginning */
    if (combination%2) {
      permutation[i] = k;
      k++;
    }
    /* if not, put the variables at the end */
    else permutation[i] = Eqs->NbRows+nb_parms+ i-k;
    combination>>=1;
  }
  /*  b- deal with the parameters */
  for (i=0; i< nb_parms; i++) {
    permutation[nb_vars+i] = Eqs->NbRows+i;
  }
  /*  c- deal with the constant */
  permutation[Eqs->NbColumns-2] = Eqs->NbColumns-2;
  
  return permutation;
} /* find_a_permutation */



/** computes the permutation of variables and parameters, according to some
 * variables to keep.  put the variables not to be kept at the beginning, then
 * the parameters and finally the variables to be kept.  strongly related to
 * the function compress_to_full_dim2
 */
unsigned int * permutation_for_full_dim2(unsigned int * vars_to_keep, 
					 unsigned int nb_keep, 
					 unsigned int nb_vars_parms, 
					 unsigned int nb_parms) {
  unsigned int * permutation = 
    (unsigned int*)malloc(sizeof(unsigned int) * nb_vars_parms+1);
  unsigned int i;
  int cur_keep =0, cur_go = 0;/*current number of variables to eliminate/keep*/
  for (i=0; i< nb_vars_parms - nb_parms; i++) {
    if (i==vars_to_keep[cur_keep]) {
      permutation[i] = nb_vars_parms-nb_keep+cur_keep;
      cur_keep++;
    }
    else {
      permutation[i] = cur_go;
      cur_go++;
    }
  }
  /* parameters are just left-shifted */
  for (i=0; i< nb_parms; i++)
    permutation[i+nb_vars_parms-nb_parms] = i+nb_vars_parms-nb_parms-nb_keep;

  /* contants stay where they are */
  permutation[nb_vars_parms] = nb_vars_parms;
  return permutation;
} /* permutation_for_full_dim2 */