1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
|
/*
This file is part of PolyLib.
PolyLib is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PolyLib is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PolyLib. If not, see <http://www.gnu.org/licenses/>.
*/
/***********************************************************************/
/* Parametrized polyhedra V4.20 */
/* copyright 1995-2000 Vincent Loechner */
/* copyright 1996-1997, Doran Wilde */
/* Permission is granted to copy, use, and distribute */
/* for any commercial or noncommercial purpose under the terms */
/* of the GNU General Public license, version 2, June 1991 */
/* (see file : LICENSING). */
/***********************************************************************/
/********************* -----------USER #DEFS-------- ***********************/
/* These are mainly for debug purposes. You shouldn't need to change */
/* anything for daily usage... */
/***************************************************************************/
/* you may define each macro independently */
/* #define DEBUGPP */
/* #define DEBUGPP3 */ /* initialization of domain, context, ... */
/* #define DEBUGPP31 */ /* even more init-domains */
/* #define DEBUGPP32 */ /* even even more... (Elim_Columns) */
/* #define DEBUGPP4 */ /* m-faces scan */
/* #define DEBUGPP41 */ /* inverse Di in scan */
/* #define DEBUGPP5 */ /* Compute_PDomains */
/********************* ---------END USER #DEFS------ ***********************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#ifdef DEBUGPP
#include <time.h>
#endif
#include <polylib/polylib.h>
static void traite_m_face(Polyhedron *, unsigned int *, unsigned int *);
static void scan_m_face(int,int,Polyhedron *,unsigned int *);
/*
* Return the intersection of two polyhedral domains 'Pol1' and 'Pol2' such
* that if the intersection is a polyhedron of lower dimension (a degenerate
* polyhedron) than the operands, it is discarded from the resulting polyhedra
* list.
*/
Polyhedron *PDomainIntersection(Polyhedron *Pol1,Polyhedron *Pol2,unsigned NbMaxRays) {
Polyhedron *p1, *p2, *p3, *d;
if (!Pol1 || !Pol2) return (Polyhedron*) 0;
if((Pol1->Dimension != Pol2->Dimension) || (Pol1->NbEq != Pol2->NbEq)) {
fprintf(stderr,
"? PDomainIntersection: operation on different dimensions\n");
return (Polyhedron*) 0;
}
POL_ENSURE_FACETS(Pol1);
POL_ENSURE_VERTICES(Pol1);
POL_ENSURE_FACETS(Pol2);
POL_ENSURE_VERTICES(Pol2);
d = (Polyhedron *)0;
for (p1=Pol1; p1; p1=p1->next) {
for (p2=Pol2; p2; p2=p2->next) {
p3 = AddConstraints(p2->Constraint[0],
p2->NbConstraints,p1,NbMaxRays);
if (!p3) continue;
/* If the new polyhedron 'p3' has lower dimension, discard it */
if (p3->NbEq!=Pol1->NbEq)
Polyhedron_Free(p3) ;
/* Otherwise add it to the new polyhderal domain 'd'. */
else
d = AddPolyToDomain(p3,d);
}
}
return d;
} /* PDomainIntersection */
/*
* Given polyhderal domains 'Pol1' and 'Pol2', return the difference of the
* two domains with a modification that the resulting polyhedra in the new
* domain don't have a 1 unit space around cut and the degenerate results
* (of smaller dimension) are discarded.
*/
Polyhedron *PDomainDifference(Polyhedron *Pol1,Polyhedron *Pol2,unsigned NbMaxRays) {
Polyhedron *p1, *p2, *p3, *d;
int i;
if (!Pol1 || !Pol2)
return (Polyhedron*) 0;
if((Pol1->Dimension != Pol2->Dimension) || (Pol1->NbEq != Pol2->NbEq)) {
fprintf(stderr,
"? PDomainDifference: operation on different dimensions\n");
return (Polyhedron*) 0;
}
POL_ENSURE_FACETS(Pol1);
POL_ENSURE_VERTICES(Pol1);
POL_ENSURE_FACETS(Pol2);
POL_ENSURE_VERTICES(Pol2);
d = (Polyhedron *)0;
for (p2=Pol2; p2; p2=p2->next) {
for (p1=Pol1; p1; p1=p1->next) {
for (i=0; i<p2->NbConstraints; i++) {
/* Add the constraint (-p2->Constraint[i]) >= 0 in 'p1' */
p3 = SubConstraint(p2->Constraint[i],p1,NbMaxRays,2);
if (!p3) continue;
/* If the new polyhedron 'p3' is empty or is a polyhedron of lower */
/* dimension, discard it. */
if (emptyQ(p3) || p3->NbEq!=Pol1->NbEq)
Polyhedron_Free(p3);
/* Otherwise add 'p3' to the new polyhderal domain 'd' */
else
d = AddPolyToDomain(p3,d);
}
}
if (p2 != Pol2)
Domain_Free(Pol1);
Pol1 = d;
d = (Polyhedron *)0;
}
return Pol1;
} /* PDomainDifference */
/*
* Return 1 if matrix 'Mat' is full column ranked, otherwise return 0.
*/
static int TestRank(Matrix *Mat) {
int i,j,k;
Value m1,m2,m3,gcd,tmp;
/* Initialize all the 'Value' variables */
value_init(m1); value_init(m2);
value_init(m3); value_init(gcd); value_init(tmp);
for(k=0;k<Mat->NbColumns;++k) {
/* If the digonal entry (k,k) is zero, search down the column(k) */
/* starting from row(k) to find a non-zero entry */
if(value_zero_p(Mat->p[k][k])) {
for(j=k+1;j<Mat->NbRows;++j) {
/* If a non-zero entry (j,k) is found */
if(value_notzero_p(Mat->p[j][k])) {
/* Exchange row(k) and row(j) */
for(i=k;i<Mat->NbColumns;++i) {
value_assign(tmp,Mat->p[j][i]);
value_assign(Mat->p[j][i],Mat->p[k][i]);
value_assign(Mat->p[k][i],tmp);
}
break;
}
}
/* If no non-zero entry is found then the matrix 'Mat' is not full */
/* ranked. Return zero. */
if(j>=Mat->NbRows) {
/* Clear all the 'Value' variables */
value_clear(m1); value_clear(m2);
value_clear(m3); value_clear(gcd); value_clear(tmp);
return 0;
}
}
/* Now Mat[k][k] is the pivot element */
for(j=k+1;j<Mat->NbRows;++j) {
/* Make every other entry (below row(k)) in column(k) zero */
value_gcd(gcd, Mat->p[j][k], Mat->p[k][k]);
for(i=k+1;i<Mat->NbColumns;++i) {
/* pour tous les indices i > k */
value_multiply(m1,Mat->p[j][i],Mat->p[k][k]);
value_multiply(m2,Mat->p[j][k],Mat->p[k][i]);
value_subtract(m3,m1,m2);
value_division(Mat->p[j][i],m3,gcd);
}
}
}
/* Clear all the 'Value' variables */
value_clear(m1); value_clear(m2);
value_clear(m3); value_clear(gcd); value_clear(tmp);
/* The matrix 'Mat' is full ranked, return 1 */
return 1;
} /* TestRank */
/*
* The Saturation matrix is defined to be an integer (int type) matrix. It is
* a boolean matrix which has a row for every constraint and a column for
* every line or ray. The bits in the binary format of each integer in the
* saturation matrix stores the information whether the corresponding constr-
* aint is saturated by ray(line) or not.
*/
typedef struct {
unsigned int NbRows;
unsigned int NbColumns;
unsigned int **p;
unsigned int *p_init;
} SatMatrix;
static SatMatrix *SMAlloc(int rows,int cols) {
unsigned int **q, *p;
int i;
SatMatrix *result = (SatMatrix *)malloc(sizeof(SatMatrix));
assert (result != NULL);
result->NbRows = rows;
result->NbColumns = cols;
result->p = q = (unsigned int **)malloc(rows * sizeof(unsigned int *));
assert (result->p != NULL);
result->p_init = p = (unsigned int *)malloc(rows * cols * sizeof(unsigned int));
assert (result->p_init != NULL);
for (i=0;i<rows;i++) {
*q++ = p;
p += cols;
}
return result;
} /* SMAlloc */
static void SMPrint (SatMatrix *matrix) {
unsigned int *p;
int i, j;
unsigned NbRows, NbColumns;
fprintf(stderr,"%d %d\n",NbRows=matrix->NbRows, NbColumns=matrix->NbColumns);
for (i=0;i<NbRows;i++) {
p = *(matrix->p+i);
for (j=0;j<NbColumns;j++)
fprintf(stderr, " %10X ", *p++);
fprintf(stderr, "\n");
}
} /* SMPrint */
static void SMFree (SatMatrix *matrix) {
free ((char *) matrix->p_init);
free ((char *) matrix->p);
free ((char *) matrix);
return;
} /* SMFree */
/* -------------------------------------------------------------------------
* Shared Global Variables:
* Used by procedures: Find_m_face, scan_m_face, Poly2Sat, traite_m_face,
* count_sat
* -------------------------------------------------------------------------
*/
static int m; /* number of parameters */
static int m_dim; /* dimension of m-face */
static int n; /* dimension (not including parameters) */
static int ws; /* Working Space size */
static int nr; /* (NbRays-1)/32 + 1 */
static Polyhedron *CEqualities;/* Equalities in the context */
static SatMatrix *Sat; /* Saturation Matrix (row=constraint, col=ray)*/
static unsigned int *egalite; /* Bool vector marking constraints in m-face */
static Matrix *Xi, *Pi; /* Xi and Pi */
static Matrix *PiTest; /* Matrix used to test if Pi is full ranked? */
static Matrix *CTest;
static Matrix *PiInv; /* Matrix inverse Pi, with the last col of */
/* each line = denominator of the line */
static Matrix *RaysDi; /* Constraint matrix for computing Di */
static int KD; /* Flag : keep the full domains in memory ? */
/* 1 = yes; 0 = no, keep constraints only */
static int nbPV; /* The number of parameterized vertices */
static Param_Vertices *PV_Result; /* List of parameterized vertices */
static Param_Domain *PDomains; /* List of domains. */
#ifdef DEBUGPP
static int nbfaces;
#endif
/*
* Add the constraints from the context polyhedron 'CEqualities' to the
* constraints of polyhedra in the polyhedral domain 'D' and return the new
* polyhedral domain. Polyhedral domain 'D' is subsequently deleted from memory
*/
static Polyhedron *Add_CEqualities(Polyhedron *D) {
Polyhedron *d,*r,*tmp;
if(!CEqualities)
return D;
else {
if(!D || emptyQ(D)) {
if(D)
Domain_Free(D);
return(Polyhedron_Copy(CEqualities));
}
r = AddConstraints(D->Constraint[0],D->NbConstraints,
CEqualities,ws);
tmp = r;
for(d=D->next;d;d=d->next) {
tmp->next = AddConstraints(d->Constraint[0],d->NbConstraints,
CEqualities,ws);
tmp = tmp->next;
}
Domain_Free(D);
return(r);
}
} /* Add_CEqualities */
#define INT_BITS (sizeof(unsigned) * 8)
unsigned int *int_array2bit_vector(unsigned int *array, int n)
{
int i, ix;
unsigned bx;
int words = (n+INT_BITS-1)/INT_BITS;
unsigned int *bv = (unsigned int *)calloc(words, sizeof(unsigned));
assert(bv);
for (i = 0, ix = 0, bx = MSB; i < n; ++i) {
if (array[i])
bv[ix] |= bx;
NEXT(ix, bx);
}
return bv;
}
/*----------------------------------------------------------------------*/
/* traite_m_face */
/* Given an m-face, compute the parameterized vertex */
/* D - The entire domain */
/* mf - Bit vector marking the lines/rays in the m-face */
/* egalite - boolean vector marking saturated constraints in m-face */
/*----------------------------------------------------------------------*/
static void traite_m_face(Polyhedron *D, unsigned int *mf,
unsigned int *egalite)
{
Matrix *Si; /* Solution */
Polyhedron *PDi; /* polyhedron Di */
Param_Vertices *PV;
int j,k,c,r;
unsigned kx, bx;
#ifdef DEBUGPP
++nbfaces;
#endif
/* Extract Xi, Pi, and RaysDi from D */
RaysDi->NbRows = 0;
for(k=0,c=0,kx=0,bx=MSB;k<D->NbRays;++k) {
if(mf[kx]&bx) { /* this ray is in the current m-face */
if(c<m+1) {
int i;
/* tester si cette nouvelle colonne est lin. indep. des autres */
/* i.e. si gauss ne donne pas de '0' sur la colonne Pi */
/* jusqu'a l'indice 'c' */
/* construit PiTest */
for(j=0;j<m+1;++j) {
for(i=0;i<c;++i)
/* les c premieres colonnes */
value_assign(PiTest->p[j][i],Pi->p[j][i]);
/* la nouvelle */
value_assign(PiTest->p[j][c],D->Ray[k][j+1+n]);
}
PiTest->NbColumns = c+1;
r = TestRank(PiTest);
if(r /* TestRank(PiTest) */) {
/* Ok, c'est lin. indep. */
for (j=0;j<n;j++)
value_assign(Xi->p[j][c],D->Ray[k][j+1]); /* Xi */
for (j=0;j<m;j++)
value_assign(Pi->p[j][c],D->Ray[k][j+1+n]); /* Pi */
value_assign(Xi->p[n][c],D->Ray[k][n+m+1]); /* const */
value_assign(Pi->p[m][c],D->Ray[k][n+m+1]); /* const */
c++;
}
}
/* Status bit */
value_assign(RaysDi->p[RaysDi->NbRows][0],D->Ray[k][0]);
Vector_Copy(&D->Ray[k][n+1],&RaysDi->p[RaysDi->NbRows][1],(m+1));
++RaysDi->NbRows;
}
NEXT(kx,bx);
}
#ifdef DEBUGPP41
fprintf(stderr, "\nRaysDi=\n");
Matrix_Print(stderr,P_VALUE_FMT,RaysDi);
if(c < m+1)
fprintf(stderr, "Invalid ");
fprintf(stderr, "Pi=\n");
Matrix_Print(stderr,P_VALUE_FMT,Pi);
#endif
#ifdef DEBUGPP4
if(c < m+1)
fprintf(stderr,"Eliminated because of no vertex\n");
#endif
if(c < m+1)
return;
/* RaysDi->numColumns = m+2; */ /* stays the same */
/* Xi->NbColumns = m+1;*/ /* VIN100: stays the same. was 'c'! */
/* Xi->NbRows = n+1; */ /* stays the same */
/* Pi->NbColumns = m+1;*/ /* VIN100: stays the same. was 'c'! */
/* Pi->NbRows = m+1; */ /* stays the same */
#ifdef DEBUGPP4
fprintf(stderr,"Xi = ");
Matrix_Print(stderr,P_VALUE_FMT,Xi);
fprintf(stderr,"Pi = ");
Matrix_Print(stderr,P_VALUE_FMT,Pi);
#endif
/* (Right) invert Pi if POSSIBLE, if not then next m-face */
/* Pi is destroyed */
if(!MatInverse(Pi,PiInv)) {
#ifdef DEBUGPP4
fprintf(stderr, "Eliminated because of no inverse Pi\n");
#endif
return;
}
#ifdef DEBUGPP4
fprintf(stderr,"FACE GENERATED!\n");
fprintf(stderr,"PiInv = ");
Matrix_Print(stderr,P_VALUE_FMT,PiInv);
#endif
/* Compute Si (now called Ti in the paper) */
Si = Matrix_Alloc(Xi->NbRows,PiInv->NbColumns);
rat_prodmat(Si,Xi,PiInv);
#ifdef DEBUGPP4
fprintf(stderr,"Si = ");
Matrix_Print(stderr,P_VALUE_FMT,Si);
#endif
Si->NbRows--; /* throw out the last row = 0 ... 0 1 */
/* Copy all of that into the PV structure */
PV = (Param_Vertices *) malloc(sizeof(Param_Vertices));
PV->next = PV_Result;
PV->Vertex = Si;
PV->Domain = NULL;
PV->Facets = int_array2bit_vector(egalite, D->NbConstraints);
PV_Result = PV;
nbPV++; /* increment vertex count */
/* Ok... now compute the parameter domain */
PDi = Rays2Polyhedron(RaysDi,ws);
#ifdef DEBUGPP3
fprintf(stderr,"RaysDi = ");
Matrix_Print(stderr,P_VALUE_FMT,RaysDi);
fprintf(stderr,"PDi = ");
Polyhedron_Print(stderr,P_VALUE_FMT,PDi);
#endif
if(KD==0) {
/* Add the equalities again to the domain */
PDi = Add_CEqualities(PDi);
PV->Domain = Polyhedron2Constraints(PDi);
Polyhedron_Free(PDi);
}
else {
Param_Domain *PD;
PD = (Param_Domain *) malloc(sizeof(Param_Domain));
PD->Domain = PDi;
PD->F = NULL;
PD->next = PDomains;
PDomains = PD;
}
return;
} /* traite_m_face */
/*----------------------------------------------------------------------*/
/* count_sat */
/* count the number of saturated rays in the bit vector mf */
/* Uses nr from global area */
/*----------------------------------------------------------------------*/
int cntbit[256] = { /* counts for 8 bits */
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 };
static int count_sat (unsigned int *mf) {
register unsigned int i, tmp, cnt=0;
for (i=0; i<nr; i++) {
tmp = mf[i];
cnt = cnt
+ cntbit[ tmp & 0xff ]
+ cntbit[ (tmp>>8) & 0xff ]
+ cntbit[ (tmp>>16) & 0xff ]
+ cntbit[ (tmp>>24) & 0xff ]
;
}
return cnt;
} /* count_sat */
/* Returns true if all bits in part are also set in bv */
static int bit_vector_includes(unsigned int *bv, int len, unsigned int *part)
{
int j;
for (j = 0; j < len; j++) {
#ifdef DEBUGPP4
fprintf(stderr, "mf=%08X Sat=%08X &=%08X\n",
part[j],bv[j], (part[j] & bv[j]));
#endif
if ((part[j] & bv[j]) != part[j])
return 0;
}
return 1;
}
/*----------------------------------------------------------------------*/
/* let D + E + L be the dimension of the polyhedron */
/* D = Dimension of polytope (ray space) */
/* L = Dimension of Lineality space (number of lines, bid) */
/* E = Dimension of Affine hull (number of equations) */
/* n = number of data indices */
/* m = number of parameters */
/* full domain: */
/* n + m = D + E + L */
/* projected domains: */
/* m = D_m + E_m + L_m */
/* n = D_n + E_n + L_n */
/* What dimension M-face, when projected onto parameter space, */
/* will give an L_m-face? */
/* What are the conditions? */
/* - at least one vertex */
/* - number of rays >= D_m+1 after removal of redundants */
/* */
/* dim of face nb saturated constraints nb saturated lines,rays */
/* ----------- ------------------------ ----------------------- */
/* (0+L)-face all E eqns + >=D ineq all L lines + 1 ray */
/* (M+L)-face all E eqns + >=(D-M) ineq all L lines + >=(M+1) rays */
/* (D+L)-face all E eqns + 0 ineq all L lines + >=(D+1) rays */
/*----------------------------------------------------------------------*/
/*----------------------------------------------------------------------*/
/* scan_m_face */
/* pos : the next candidate constraint position */
/* nb_un : number of saturated constraints needed to finish a face */
/* D : the source polyhedron (context included ) */
/* mf : bit-array marking rays which are saturated so far */
/* From Global area: */
/* ---------------- */
/* n : number of data indices */
/* m : number of parameters */
/* egalite : boolean vector marking saturated constraints in m-face */
/* Sat : Saturation Matrix (row=constraints, col=rays) */
/* ws : working space size */
/* nr : (NbRays-1)/32 + 1 */
/* */
/* Recursive function to find the rays and vertices of each m-face */
/*----------------------------------------------------------------------*/
static void scan_m_face(int pos,int nb_un,Polyhedron *D,unsigned int *mf) {
/* pos - the next candidate constraint position */
/* nb_un - the number of constraints needed to finish a face */
/* D - the source polyhedron */
/* mf - (bit vector) marks rays that are saturated so far */
unsigned int *new_mf;
#ifdef DEBUGPP4
fprintf(stderr,"Start scan_m_face(pos=%d, nb_un=%d, n=%d, m=%d\n",
pos,nb_un,n,m);
fprintf(stderr,"mf = ");
{
int i;
for(i=0;i<nr;i++)
fprintf(stderr,"%08X", mf[i]);
fprintf(stderr,"\nequality = [");
for(i=0;i<D->NbConstraints;i++)
fprintf(stderr," %1d",egalite[i]);
fprintf(stderr,"]\n");
}
#endif
if(nb_un == 0) { /* Base case */
int i;
/*********** ELIMINATION OF REDUNDANT FACES ***********/
/* if all these vertices also verify a previous constraint */
/* which is NOT already selected, we eliminate this face */
/* This keeps the lexicographically greatest selection */
for(i=0;i<pos-1;i++)
{
if(egalite[i])
continue; /* already selected */
/* if Sat[i] & mf == mf then it's redundant */
#ifdef DEBUGPP4
fprintf(stderr, "Sat[%d]\n", i);
#endif
if (bit_vector_includes(Sat->p[i], nr, mf)) {
#ifdef DEBUGPP4
fprintf(stderr, "Redundant with constraint %d\n", i);
#endif
return; /* it is redundant */
}
}
/********* END OF ELIMINATION OF DEGENERATE FACES *********/
/* Now check for other constraints that are verified */
for (i = pos; i < D->NbConstraints; ++i) {
if (bit_vector_includes(Sat->p[i], nr, mf))
egalite[i] = 1;
}
/* if we haven't found a constraint verified by all */
/* the rays, its OK, it's a new face. */
traite_m_face(D, mf, egalite);
for (i = pos; i < D->NbConstraints; ++i)
egalite[i] = 0;
return;
}
/* See if there are enough constraints left to finish */
if((pos+nb_un)>D->NbConstraints) return;
/* Recurring part of the procedure */
/* Add the pos'th constraint, compute new saturation vector */
{
int k;
new_mf = (unsigned int *)malloc(nr*sizeof(unsigned int));
for (k=0; k<nr; k++)
new_mf[k] = mf[k] & Sat->p[pos][k];
}
#ifdef DEBUGPP4
fprintf(stderr,"new_mf = ");
{
int i;
for(i=0;i<nr;i++) {
fprintf(stderr,"%08X", new_mf[i]);
}
fprintf(stderr,"\ncount(new_mf) = %d\n",count_sat(new_mf));
}
#endif
{
int c;
c = count_sat(new_mf);
/* optimization : at least m_dim+1 rays must be saturated to add this constraint */
if (c>m_dim )
{
int redundant = 0;
egalite[pos]=1; /* Try it with the pos-th constraint */
/* If this constraint does not change anything,
* it is redundant with respect to the selected
* equalities and the remaining inequalities.
* Check whether it is redundant with respect
* to just the selected equalities.
*/
if( c==count_sat(mf) ) {
int i, c, j;
for (i = 0, c = 0; i < D->NbConstraints; ++i) {
if (egalite[i] == 0 || egalite[i] == -1)
continue;
for (j = 0; j < D->Dimension+1; ++j)
value_assign(CTest->p[j][c],
D->Constraint[i][j+1]);
++c;
}
CTest->NbColumns = c;
#ifdef DEBUGPP41
Matrix_Print(stderr,P_VALUE_FMT,CTest);
#endif
redundant = !TestRank(CTest);
}
/* Do not decrement nb_un if equality is redundant. */
if( redundant )
{
egalite[pos]=-1; /* Don't use in further redundance test
*/
scan_m_face(pos+1,nb_un,D,new_mf);
}
else
{
scan_m_face(pos+1,nb_un-1,D,new_mf);
}
}
}
free(new_mf);
egalite[pos]=0; /* Try it without the pos-th constraint */
if ((pos+nb_un)>=D->NbConstraints) return;
scan_m_face(pos+1,nb_un,D,mf);
return;
} /* scan_m_face */
/*
* Create a saturation matrix with rows correspond to the constraints and
* columns correspond to the rays of the polyhedron 'Pol'. Global variable
* 'nr' is set in the function.
*/
static SatMatrix *Poly2Sat(Polyhedron *Pol,unsigned int **L) {
SatMatrix *Sat;
int i, j, k, kx;
unsigned int *Temp;
Value *p1, *p2, p3,tmp;
unsigned Dimension, NbRay, NbCon, bx;
/* Initialize all the 'Value' variables */
value_init(p3); value_init(tmp);
NbRay = Pol->NbRays;
NbCon = Pol->NbConstraints;
Dimension = Pol->Dimension+1; /* Homogeneous Dimension */
/* Build the Sat matrix */
nr = (NbRay - 1)/(sizeof(int)*8) + 1; /* Set globally */
Sat = SMAlloc(NbCon,nr);
Temp = (unsigned int *)malloc(nr*sizeof(unsigned int));
memset(Sat->p_init,0,nr*NbCon*sizeof(int));
memset(Temp,0,nr*sizeof(unsigned int));
kx=0; bx=MSB;
for (k=0; k<NbRay; k++) {
for (i=0; i<NbCon; i++) {
p1 = &Pol->Constraint[i][1];
p2 = &Pol->Ray[k][1];
value_set_si(p3,0);
for (j=0;j<Dimension;j++) {
value_multiply(tmp,*p1,*p2);
value_addto(p3,p3,tmp);
p1++; p2++;
}
if (value_zero_p(p3))
Sat->p[i][kx]|=bx;
}
Temp[kx] |= bx;
NEXT(kx, bx);
}
/* Set 'L' to an array containing ones in every bit position of its */
/* elements. */
*L = Temp;
/* Clear all the 'Value' variables */
value_clear(p3); value_clear(tmp);
return Sat;
} /* Poly2Sat */
/*
* Create a parametrized polyhedron with zero parameters. This function was
* first written by Xavier Redon, and was later modified by others.
*/
Param_Polyhedron *GenParamPolyhedron(Polyhedron *Pol, Matrix *Rays)
{
Param_Polyhedron *result;
int nbRows, nbColumns;
int i, size, rays;
nbRows=Pol->NbRays;
nbColumns=Pol->Dimension+2;
/* Count the number of rays */
for(i=0, rays=0; i<nbRows; i++)
if(value_notone_p(Pol->Ray[i][0]) ||
value_zero_p(Pol->Ray[i][nbColumns-1]))
++rays;
/* Initialize the result */
result=(Param_Polyhedron *)malloc(sizeof(Param_Polyhedron));
result->nbV=nbRows-rays;
result->V=NULL;
result->Constraints = Polyhedron2Constraints(Pol);
result->Rays = Rays;
/* Build the parametric vertices */
for(i=0;i<nbRows;i++) {
Matrix *vertex;
Param_Vertices *paramVertex;
int j;
if (value_notone_p(Pol->Ray[i][0]) ||
value_zero_p(Pol->Ray[i][nbColumns-1]))
continue;
vertex=Matrix_Alloc(nbColumns-2,2);
for(j=1;j<nbColumns-1;j++) {
value_assign(vertex->p[j-1][0],Pol->Ray[i][j]);
value_assign(vertex->p[j-1][1],Pol->Ray[i][nbColumns-1]);
}
paramVertex=(Param_Vertices *)malloc(sizeof(Param_Vertices));
paramVertex->Vertex=vertex;
/* There is one validity domain : universe of dimension 0 */
paramVertex->Domain=Matrix_Alloc(1,2);
value_set_si(paramVertex->Domain->p[0][0],1);
value_set_si(paramVertex->Domain->p[0][1],1);
paramVertex->Facets = NULL;
paramVertex->next=result->V;
result->V=paramVertex;
}
/* Build the parametric domains (only one here) */
if (nbRows > 1)
size=(nbRows-1)/(8*sizeof(int))+1;
else
size = 1;
result->D=(Param_Domain *)malloc(sizeof(Param_Domain));
result->D->next=NULL;
result->D->Domain=Universe_Polyhedron(0);
result->D->F=(unsigned int *)malloc(size*sizeof(int));
memset(&result->D->F[0],0xFF,size*sizeof(int));
return result;
} /* GenParamPolyhedron */
/*----------------------------------------------------------------------*/
/* PreElim_Columns */
/* function being called before Elim_Columns */
/* Equalities in E are analysed to initialize ref and p. */
/* These two vectors are used to construct the new constraint matrix */
/* PreElim_Columns returns the transformation matrix to re-convert the */
/* resulting domains in the same format (by adding empty columns) */
/* in the parameter space */
/*----------------------------------------------------------------------*/
Matrix *PreElim_Columns(Polyhedron *E,int *p,int *ref,int m) {
int i,j,l;
Matrix *T;
/* find which columns to eliminate */
/* p contains, for each line in E, the column to eliminate */
/* (i.e. the corresponding parameter index to eliminate) */
/* 0 <= i <= E->NbEq, and 1 <= p[i] <= E->Dimension */
memset(p,0,sizeof(int)*(E->NbEq));
#ifdef DEBUGPP32
fprintf(stderr,"\n\nPreElim_Columns starting\n");
fprintf(stderr,"E =\n");
Polyhedron_Print(stderr,P_VALUE_FMT,E);
#endif
for(l=0;l<E->NbEq;++l) {
if(value_notzero_p(E->Constraint[l][0])) {
fprintf(stderr,"Internal error: Elim_Columns (polyparam.c), expecting equalities first in E.\n");
free(p);
return(NULL);
}
for(i=1;value_zero_p(E->Constraint[l][i]);++i) {
if(i==E->Dimension+1) {
fprintf(stderr,"Internal error: Elim_Columns (polyparam.c), expecting non-empty constraint in E.\n");
free(p);
return( NULL );
}
}
p[l] = i;
#ifdef DEBUGPP32
fprintf(stderr,"p[%d] = %d,",l,p[l]);
#endif
}
/* Reference vector: column ref[i] in A corresponds to column i in M */
for(i=0;i<E->Dimension+2-E->NbEq;++i) {
ref[i]=i;
for(j=0;j<E->NbEq;++j)
if(p[j]<=ref[i])
ref[i]++;
#ifdef DEBUGPP32
fprintf(stderr,"ref[%d] = %d,",i,ref[i]);
#endif
}
/* Size of T : phdim-nbEq * phdim */
T = Matrix_Alloc(m+1-E->NbEq,m+1);
for(i=0;i<T->NbColumns;i++)
for(j=0;j<T->NbRows;j++)
if(ref[E->Dimension-m+j+1] == E->Dimension-m+i+1)
value_set_si(T->p[j][i],1);
else
value_set_si(T->p[j][i],0);
#ifdef DEBUGPP32
fprintf(stderr,"\nTransMatrix =\n");
Matrix_Print(stderr,P_VALUE_FMT,T);
#endif
return(T);
} /* PreElim_Columns */
/*----------------------------------------------------------------------*/
/* Elim_Columns */
/* Eliminate columns from A, using the equalities in E. */
/* ref and p are precalculated by PreElim_Columns, using E; */
/* these two vectors are used to construct the new constraint matrix */
/*----------------------------------------------------------------------*/
Polyhedron *Elim_Columns(Polyhedron *A,Polyhedron *E,int *p,int *ref) {
int i,l,c;
Matrix *M, *C;
Polyhedron *R;
Value tmp1,tmp2;
/* Initialize all the 'Value' variables */
value_init(tmp1); value_init(tmp2);
#ifdef DEBUGPP32
fprintf(stderr,"\nElim_Columns starting\n");
fprintf(stderr,"A =\n" );
Polyhedron_Print(stderr,P_VALUE_FMT,A);
#endif
/* Builds M = constraint matrix of A, useless columns zeroed */
M = Polyhedron2Constraints(A);
for(l=0;l<E->NbEq;++l) {
for(c=0;c<M->NbRows;++c) {
if(value_notzero_p(M->p[c][p[l]])) {
/* A parameter to eliminate here ! */
for(i=1;i<M->NbColumns;++i) {
value_multiply(tmp1,M->p[c][i],E->Constraint[l][p[l]]);
value_multiply(tmp2,E->Constraint[l][i],M->p[c][p[l]]);
value_subtract(M->p[c][i],tmp1,tmp2);
}
}
}
}
#ifdef DEBUGPP32
fprintf(stderr,"\nElim_Columns after zeroing columns of A.\n");
fprintf(stderr,"M =\n");
Matrix_Print(stderr,P_VALUE_FMT,M);
#endif
/* Builds C = constraint matrix, useless columns eliminated */
C = Matrix_Alloc(M->NbRows,M->NbColumns - E->NbEq);
for(l=0;l<C->NbRows;++l)
for(c=0;c<C->NbColumns;++c) {
value_assign(C->p[l][c],M->p[l][ref[c]]);
}
#ifdef DEBUGPP32
fprintf(stderr,"\nElim_Columns after eliminating columns of A.\n");
fprintf(stderr,"C =\n");
Matrix_Print(stderr,P_VALUE_FMT,C);
#endif
R = Constraints2Polyhedron(C,ws);
Matrix_Free(C);
Matrix_Free(M);
value_clear(tmp1); value_clear(tmp2);
return(R);
} /* Elim_Columns */
static Polyhedron *Recession_Cone(Polyhedron *P, unsigned nvar, unsigned MaxRays)
{
int i;
Matrix *M = Matrix_Alloc(P->NbConstraints, 1 + nvar + 1);
Polyhedron *R;
for (i = 0; i < P->NbConstraints; ++i)
Vector_Copy(P->Constraint[i], M->p[i], 1+nvar);
R = Constraints2Polyhedron(M, MaxRays);
Matrix_Free(M);
return R;
}
/* Compute lines/unidirectional rays of the (non parametric) polyhedron */
/* Input :
* D1 : combined polyhedron,
* Output :
* Rays : non parametric ray matrix
* return value : number of lines
*/
static int ComputeNPLinesRays(int n, Polyhedron *D1, Matrix **Rays)
{
int i, j, nbr, dimfaces;
Polyhedron *RC; /* Recession Cone */
RC = Recession_Cone(D1, n, ws);
/* get the rays/lines from RC */
nbr = 0;
for (i = 0; i < RC->NbRays ;i++)
if (value_zero_p(RC->Ray[i][n+1]))
nbr++;
*Rays=Matrix_Alloc(nbr, n+2);
for (i = 0, j = 0; j < nbr ;i++)
if (value_zero_p(RC->Ray[i][n+1]))
Vector_Copy(RC->Ray[i], (*Rays)->p[j++], n+2);
dimfaces = RC->NbBid;
Polyhedron_Free(RC);
#ifdef DEBUGPP31
fprintf(stderr, "Rays = ");
Matrix_Print(stderr, P_VALUE_FMT, *Rays);
fprintf(stderr, "dimfaces = %d\n", dimfaces);
#endif
return dimfaces;
}
/*
* Given a polyhedron 'Di' in combined data and parameter space and a context
* polyhedron 'C' representing the constraints on the parameter space, create
* a list of parameterized vertices and assign values to global variables:
* m,n,ws,Sat,egalite,mf,Xi,Pi,PiInv,RaysDi,CEqualities.
*/
Param_Polyhedron *Find_m_faces(Polyhedron **Di,Polyhedron *C,int keep_dom,int working_space,Polyhedron **CEq,Matrix **CT) {
unsigned int *mf;
int i, j, dimfaces;
Polyhedron *D=*Di,
*C1, /* true context */
*D1; /* the combined polyhedron, including context C */
Matrix *Rays, /* lines/rays (non parametric) */
*M;
Param_Polyhedron *res;
int *p, *ref;
CEqualities = NULL;
if(CT) {
*CEq = NULL;
*CT = NULL;
}
if(!D || !C)
return (Param_Polyhedron *) 0;
ws = working_space;
m = C->Dimension;
n = D->Dimension - m;
if(n<0) {
fprintf(stderr,
"Find_m_faces: ?%d parameters of a %d-polyhedron !\n",m,n);
return (Param_Polyhedron *) 0;
}
if (m==0)
return GenParamPolyhedron(D,Matrix_Alloc(0,2));
/* Add constraints from Context to D -> result in D1 */
C1 = align_context(C,D->Dimension,ws);
#ifdef DEBUGPP31
fprintf(stderr,"m = %d\n",m);
fprintf(stderr, "D = ");
Polyhedron_Print(stderr,P_VALUE_FMT,D);
fprintf(stderr,"C1 = ");
Polyhedron_Print(stderr,P_VALUE_FMT,C1);
#endif
D1 = DomainIntersection(D,C1,ws);
#ifdef DEBUGPP31
fprintf(stderr,"D1 = ");
Polyhedron_Print(stderr,P_VALUE_FMT,D1);
#endif
Domain_Free(C1);
if (!D1)
return(NULL);
if (emptyQ(D1)) {
Polyhedron_Free(D1);
return(NULL);
}
/* Compute the true context C1 */
/* M : lines in the direction of the first n indices (index space) */
M = Matrix_Alloc(n, D1->Dimension+2);
for (i=0; i<n; i++)
value_set_si(M->p[i][i+1],1);
C1 = DomainAddRays(D1,M,ws);
Matrix_Free(M);
#ifdef DEBUGPP31
fprintf(stderr,"True context C1 = ");
Polyhedron_Print(stderr,P_VALUE_FMT,C1);
#endif
dimfaces = ComputeNPLinesRays(n, D1, &Rays);
/* CEqualities contains the constraints (to be added again later) */
/* *CT is the transformation matrix to add the removed parameters */
if(!CT) {
if (C1->NbEq == 0) {
Polyhedron_Free(C1);
C1 = NULL;
} else {
Polyhedron *CEq1, /* CEqualities, in homogeneous dim */
*D2; /* D1, (temporary) simplified */
/* Remove equalities from true context C1 and from D1 */
/* Compute CEqualities = matrix of equalities in C1, projected in */
/* the parameter space */
M = Matrix_Alloc(C1->NbEq,m+2);
for(j=0,i=0;i<C1->NbEq;++i,++j) {
while(value_notzero_p(C1->Constraint[j][0]))
++j;
value_assign(M->p[i][0],C1->Constraint[j][0]);
Vector_Copy(&C1->Constraint[j][D->Dimension-m+1],&M->p[i][1],(m+1));
}
CEqualities = Constraints2Polyhedron(M,ws);
Matrix_Free(M);
CEq1 = align_context(CEqualities,D->Dimension,ws);
/* Simplify D1 and C1 (remove the equalities) */
D2 = DomainSimplify(D1,CEq1,ws);
Polyhedron_Free(D1);
Polyhedron_Free(C1);
Polyhedron_Free(CEq1);
D1 = D2;
C1 = NULL;
}
}
else { /* if( CT ) */
Polyhedron *CEq1, /* CEqualities */
*D2; /* D1, (temporary) simplified */
/* Suppress all useless constraints in parameter domain */
/* when CT is not NULL (ehrhart) */
/* Vin100, march 01 */
CEq1 = C1;
M = Matrix_Alloc(C1->NbConstraints,m+2);
for(i=0;i<C1->NbConstraints;++i) {
value_assign(M->p[i][0],C1->Constraint[i][0]);
Vector_Copy(&C1->Constraint[i][D->Dimension-m+1],&M->p[i][1],(m+1));
}
CEqualities = Constraints2Polyhedron( M, ws );
Matrix_Free(M);
D2 = DomainSimplify(D1,CEq1,ws);
Polyhedron_Free(D1);
D1 = D2;
C1 = Universe_Polyhedron(D2->Dimension);
/* if CT is not NULL, the constraints are eliminated */
/* *CT will contain the transformation matrix to come back to the */
/* original dimension (for a polyhedron, in the parameter space) */
if( CEq1->NbEq )
{
m -= CEq1->NbEq;
p = (int *)malloc(sizeof(int)*(CEq1->NbEq));
}
else
p = NULL;
ref = (int*) malloc(sizeof(int)*
(CEq1->Dimension+2-CEq1->NbEq));
*CT = PreElim_Columns(CEq1,p,ref,CEqualities->Dimension);
D2 = Elim_Columns(D1,CEq1,p,ref);
if (p)
free(p);
free(ref);
#ifdef DEBUGPP3
fprintf(stderr,"D2\t Dim = %3d\tNbEq = %3d\tLines = %3d\n",
D2->Dimension,D2->NbEq,D2->NbBid);
C2 = Elim_Columns(C1,CEq1,p,ref);
fprintf(stderr,"C2\t Dim = %3d\tNbEq = %3d\tLines = %3d\n",
C2->Dimension,C2->NbEq,C2->NbBid);
Polyhedron_Free(C2);
#endif
Polyhedron_Free(D1);
Polyhedron_Free(C1);
D1 = D2;
C1 = NULL;
*CEq = CEqualities;
#ifdef DEBUGPP3
fprintf(stderr,"Polyhedron CEq = ");
Polyhedron_Print(stderr,P_VALUE_FMT,*CEq);
fprintf(stderr,"Matrix CT = ");
Matrix_Print(stderr,P_VALUE_FMT,*CT);
#endif
Polyhedron_Free(CEq1);
CEqualities = NULL; /* don't simplify ! */
/* m changed !!! */
if(m==0) {
/* return the new D1 too */
*Di = D1;
return GenParamPolyhedron(D1, Rays);
}
}
#ifdef DEBUGPP3
fprintf(stderr,"Polyhedron D1 (D AND C) = ");
Polyhedron_Print(stderr,P_VALUE_FMT, D1);
fprintf(stderr,"Polyhedron CEqualities = ");
if(CEqualities) Polyhedron_Print(stderr,P_VALUE_FMT, CEqualities);
else fprintf(stderr,"NULL\n");
#endif
KD = keep_dom;
PDomains = NULL;
PV_Result = NULL;
nbPV = 0;
if (emptyQ(D1)) {
Polyhedron_Free(D1);
Matrix_Free(Rays);
return NULL;
}
/* mf : a bit array indicating which rays are part of the m-face */
/* Poly2Sat initializes mf to all ones */
/* set global variable nr to size (number of words) of mf */
Sat = Poly2Sat(D1,&mf);
#ifdef DEBUGPP4
fprintf(stderr,"Sat = ");
SMPrint(Sat);
fprintf(stderr,"mf = ");
for (i=0; i<nr; i++)
fprintf(stderr,"%08X", mf[i]);
fprintf(stderr, "\n");
#endif
/* A boolean array saying which constraints are part of the m-face */
egalite = (unsigned int *)malloc(sizeof(int)*D1->NbConstraints);
memset(egalite,0, sizeof(int)*D1->NbConstraints);
for (i=0; i<D1->NbEq; i++)
egalite[i] = 1;
Xi = Matrix_Alloc(n+1,m+1);
Pi = Matrix_Alloc(m+1,m+1);
PiTest = Matrix_Alloc(m+1,m+1);
CTest = Matrix_Alloc(D->Dimension+1,D->NbConstraints);
PiInv = Matrix_Alloc(m+1,m+2);
RaysDi = Matrix_Alloc(D1->NbRays,m+2);
m_dim = m;
/* m_dim has to be increased by the dimension of the smallest faces
* of the (non parametric) polyhedron
*/
m_dim += dimfaces;
/* if the smallest face is of smaller dimension than m_dim,
* then increase m_dim (I think this should never happen --Vincent)
*/
#ifdef DEBUGPP3
if (m_dim < D1->NbBid)
fprintf(stderr, "m_dim (%d) < D1->NbBid (%d)\n", m_dim, D1->NbBid );
#endif
if (m_dim < D1->NbBid)
m_dim = D1->NbBid;
#ifdef DEBUGPP
nbfaces=0;
#endif
#ifdef DEBUGPP3
fprintf(stderr, "m_dim = %d\n", m_dim);
fprintf(stderr,
"Target: find faces that saturate %d constraints and %d rays/lines\n",
D1->Dimension - m_dim,m_dim+1);
#endif
/* D1->NbEq constraints already saturated ! */
scan_m_face(D1->NbEq,(D1->Dimension - m_dim - D1->NbEq),D1,mf);
/* pos, number of constraints needed */
#ifdef DEBUGPP
fprintf( stderr, "Number of m-faces: %d\n", nbfaces );
#endif
Matrix_Free(RaysDi);
Matrix_Free(PiInv);
Matrix_Free(PiTest);
Matrix_Free(CTest);
Matrix_Free(Pi);
Matrix_Free(Xi);
free(egalite);
free(mf);
SMFree(Sat);
/* if(CEqualities && keep_dom==0) {
Domain_Free(CEqualities);
}
*/
res = (Param_Polyhedron *) malloc (sizeof(Param_Polyhedron));
res->nbV = nbPV;
res->V = PV_Result;
res->D = PDomains;
res->Constraints = Polyhedron2Constraints(D1);
res->Rays = Rays;
if(CT) /* return the new D1 too ! */
*Di = D1;
else
Domain_Free(D1);
return(res);
} /* Find_m_faces */
/*
* Given parametric domain 'PD' and number of parametric vertices 'nb_domains',
* find the vertices that belong to distinct sub-domains.
*/
void Compute_PDomains(Param_Domain *PD,int nb_domains,int working_space) {
unsigned bx;
int i, ix, nv;
Polyhedron *dx, *d1, *d2;
Param_Domain *p1, *p2, *p2prev, *PDNew;
if (nb_domains==0) {
#ifdef DEBUGPP5
fprintf(stderr,"No domains\n");
#endif
return;
}
/* Already filled out by GenParamPolyhedron */
if (!PD->next && PD->F)
return;
/* Initialization */
nv = (nb_domains - 1)/(8*sizeof(int)) + 1;
#ifdef DEBUGPP5
fprintf(stderr,"nv = %d\n",nv);
#endif
for(p1=PD,i=0,ix=0,bx=MSB;p1;p1=p1->next,i++) {
/* Assign a bit array 'p1->F' of suitable size to include the vertices */
p1->F = (unsigned *) malloc (nv * sizeof(unsigned));
/* Set the bit array to zeros */
memset(p1->F,0,nv * sizeof(unsigned));
p1->F[ix] |= bx; /* Set i'th bit to one */
NEXT(ix, bx);
}
#ifdef DEBUGPP5
fprintf(stderr,"nb of vertices=%d\n",i);
#endif
/* Walk the PD list with two pointers */
ix = 0; bx=MSB;
for (p1=PD;p1;p1=p1->next) {
for (p2prev=p1,p2=p1->next;p2;p2prev=p2,p2=p2->next) {
/* Find intersection */
dx = PDomainIntersection(p1->Domain,p2->Domain,working_space);
if (!dx || emptyQ(dx)) {
#ifdef DEBUGPP5
fprintf( stderr, "Empty dx (p1 inter p2). Continuing\n");
#endif
if(dx)
Domain_Free(dx);
continue;
}
#ifdef DEBUGPP5
fprintf(stderr,"Begin PDomainDifference\n");
fprintf(stderr, "p1=");
Polyhedron_Print(stderr,P_VALUE_FMT,p1->Domain);
fprintf(stderr,"p2=");
Polyhedron_Print(stderr,P_VALUE_FMT,p2->Domain);
#endif
d1 = PDomainDifference(p1->Domain,p2->Domain,working_space);
d2 = PDomainDifference(p2->Domain,p1->Domain,working_space);
#ifdef DEBUGPP5
fprintf(stderr,"p1\\p2=");
Polyhedron_Print(stderr,P_VALUE_FMT,d1);
fprintf(stderr,"p2\\p1=");
Polyhedron_Print(stderr,P_VALUE_FMT,d2);
fprintf(stderr,"END PDomainDifference\n\n");
#endif
if (!d1 || emptyQ(d1) || d1->NbEq!=0) {
#ifdef DEBUGPP5
fprintf(stderr,"Empty d1\n");
#endif
if (d1)
Domain_Free(d1);
Domain_Free(dx);
if (!d2 || emptyQ(d2) || d2->NbEq!=0) {
#ifdef DEBUGPP5
fprintf( stderr, "Empty d2 (deleting)\n");
#endif
/* dx = p1->Domain = p2->Domain */
if (d2) Domain_Free(d2);
/* Update p1 */
for (i=0;i<nv;i++)
p1->F[i] |= p2->F[i];
/* Delete p2 */
p2prev->next = p2->next;
Domain_Free(p2->Domain);
free(p2->F);
free(p2);
p2 = p2prev;
}
else { /* d2 is not empty --> dx==p1->domain */
#ifdef DEBUGPP5
fprintf( stderr, "p2 replaced by d2\n");
#endif
/* Update p1 */
for(i=0;i<nv;i++)
p1->F[i] |= p2->F[i];
/* Replace p2 with d2 */
Domain_Free( p2->Domain );
p2->Domain = d2;
}
}
else { /* d1 is not empty */
if (!d2 || emptyQ(d2) || d2->NbEq!=0) {
#ifdef DEBUGPP5
fprintf( stderr, "p1 replaced by d1\n");
#endif
if (d2) Domain_Free(d2);
/* dx = p2->domain */
Domain_Free(dx);
/* Update p2 */
for(i=0;i<nv;i++)
p2->F[i] |= p1->F[i];
/* Replace p1 with d1 */
Domain_Free(p1->Domain);
p1->Domain = d1;
}
else { /*d2 is not empty-->d1,d2,dx are distinct */
#ifdef DEBUGPP5
fprintf(stderr,"Non-empty d1 and d2\nNew node created\n");
#endif
/* Create a new node for dx */
PDNew = (Param_Domain *) malloc( sizeof(Param_Domain) );
PDNew->F = (unsigned int *)malloc( nv*sizeof(int) );
memset(PDNew->F,0,nv*sizeof(int));
PDNew->Domain = dx;
for (i=0;i<nv;i++)
PDNew->F[i] = p1->F[i] | p2->F[i];
/* Replace p1 with d1 */
Domain_Free( p1->Domain );
p1->Domain = d1;
/* Replace p2 with d2 */
Domain_Free( p2->Domain );
p2->Domain = d2;
/* Insert new node after p1 */
PDNew->next = p1->next;
p1->next = PDNew;
}
}
} /* end of p2 scan */
if (p1->Domain->next) {
Polyhedron *C = DomainConvex(p1->Domain, working_space);
Domain_Free(p1->Domain);
p1->Domain = C;
}
} /* end of p1 scan */
} /* Compute_PDomains */
/*
* Given a polyhedron 'Din' in combined data and parametre space, a context
* polyhedron 'Cin' representing the constraints on the parameter space and
* a working space size 'working_space', return a parametric polyhedron with
* a list of parametric vertices and their defining domains.
*/
Param_Polyhedron *Polyhedron2Param_Vertices(Polyhedron *Din,Polyhedron *Cin,int working_space) {
Param_Polyhedron *result;
POL_ENSURE_FACETS(Din);
POL_ENSURE_VERTICES(Din);
POL_ENSURE_FACETS(Cin);
POL_ENSURE_VERTICES(Cin);
#ifdef DEBUGPP
fprintf(stderr,"Polyhedron2Param_Vertices algorithm starting at : %.2fs\n",
(float)clock()/CLOCKS_PER_SEC);
#endif
/***************** Scan the m-faces ****************/
result = Find_m_faces(&Din,Cin,0,working_space,NULL,NULL);
#ifdef DEBUGPP
fprintf(stderr, "nb of points : %d\n",result->nbV);
#endif
#ifdef DEBUGPP
fprintf(stderr, "end main loop : %.2fs\n", (float)clock()/CLOCKS_PER_SEC);
#endif
return(result);
} /* Polyhedron2Param_Vertices */
/*
* Free the memory allocated to a list of parametrized vertices
*/
void Param_Vertices_Free(Param_Vertices *PV) {
Param_Vertices *next_pv;
while(PV) {
next_pv = PV->next;
if (PV->Vertex) Matrix_Free(PV->Vertex);
if (PV->Domain) Matrix_Free(PV->Domain);
if (PV->Facets) free(PV->Facets);
free(PV);
PV = next_pv;
}
} /* Param_Vertices_Free */
/*
* Print a list of parametrized vertices *
*/
void Print_Vertex(FILE *DST, Matrix *V, const char **param_names)
{
int l, v;
int first;
Value gcd,tmp;
value_init(gcd); value_init(tmp);
fprintf(DST, "[" );
for(l=0;l<V->NbRows;++l){
/* Variables */
first=1;
fprintf(DST, " " );
for(v=0;v < V->NbColumns-2;++v) {
if(value_notzero_p(V->p[l][v])) {
value_gcd(gcd, V->p[l][v], V->p[l][V->NbColumns-1]);
value_divexact(tmp, V->p[l][v], gcd);
if(value_posz_p(tmp)) {
if(!first)
fprintf(DST, "+");
if(value_notone_p(tmp)) {
value_print(DST,VALUE_FMT,tmp);
}
}
else { /* V->p[l][v]/gcd<0 */
if(value_mone_p(tmp))
fprintf(DST, "-" );
else {
value_print(DST,VALUE_FMT,tmp);
}
}
value_divexact(tmp, V->p[l][V->NbColumns-1], gcd);
if(value_notone_p(tmp)) {
fprintf(DST, "%s/", param_names[v]);
value_print(DST,VALUE_FMT,tmp);
}
else
fprintf(DST, "%s", param_names[v]);
first=0;
}
}
/* Constant */
if(value_notzero_p(V->p[l][v]) || first) {
if(value_posz_p(V->p[l][v]) && !first)
fprintf(DST,"+");
value_gcd(gcd, V->p[l][v], V->p[l][V->NbColumns-1]);
value_divexact(tmp, V->p[l][v], gcd);
value_print(DST,VALUE_FMT,tmp);
value_divexact(tmp, V->p[l][V->NbColumns-1], gcd);
if(value_notone_p(tmp)) {
fprintf(DST,"/");
value_print(DST,VALUE_FMT,tmp);
fprintf(DST," ");
}
}
if (l<V->NbRows-1)
fprintf(DST, ", ");
}
fprintf(DST, " ]");
value_clear(gcd); value_clear(tmp);
return;
} /* Print_Vertex */
/*----------------------------------------------------------------------*/
/* VertexCT */
/* convert a paramvertex from reduced space to normal m-space */
/*----------------------------------------------------------------------*/
Matrix *VertexCT(Matrix *V,Matrix *CT) {
Matrix *Vt;
int i,j,k;
if(CT) {
/* Have to transform the vertices to original dimension */
Vt = Matrix_Alloc(V->NbRows,CT->NbColumns+1);
for(i=0;i<V->NbRows;++i) {
value_assign(Vt->p[i][CT->NbColumns],V->p[i][V->NbColumns-1]);
for(j=0;j<CT->NbColumns;j++) {
for(k=0;k<CT->NbRows;k++)
if(value_notzero_p(CT->p[k][j]))
break;
if(k<CT->NbRows)
value_assign(Vt->p[i][j],V->p[i][k]);
else
value_set_si(Vt->p[i][j],0);
}
}
return(Vt);
}
else
return(NULL);
} /* VertexCT */
/*
* Print the validity Domain 'D' of a parametric polyhedron
*/
void Print_Domain(FILE *DST, Polyhedron *D, const char **pname)
{
int l, v;
int first;
POL_ENSURE_FACETS(D);
POL_ENSURE_VERTICES(D);
for(l=0;l<D->NbConstraints;++l) {
fprintf(DST, " ");
first = 1;
for(v=1;v<=D->Dimension;++v) {
if(value_notzero_p(D->Constraint[l][v])) {
if(value_one_p(D->Constraint[l][v])) {
if(first)
fprintf(DST, "%s ", pname[v-1]);
else
fprintf(DST, "+ %s ", pname[v-1] );
}
else if(value_mone_p(D->Constraint[l][v]))
fprintf(DST, "- %s ", pname[v-1] );
else {
if(value_pos_p(D->Constraint[l][v]) && !first )
fprintf(DST, "+ " );
value_print(DST,VALUE_FMT,D->Constraint[l][v]);
fprintf(DST,"%s ",pname[v-1]);
}
first = 0;
}
}
if(value_notzero_p(D->Constraint[l][v])) {
if(value_pos_p(D->Constraint[l][v]) && !first)
fprintf(DST,"+");
fprintf(DST," ");
value_print(DST,VALUE_FMT,D->Constraint[l][v]);
}
fprintf(DST,(value_notzero_p(D->Constraint[l][0])) ?" >= 0":" = 0");
fprintf(DST, "\n" );
}
fprintf(DST, "\n");
if( D->next )
{
fprintf( DST, "UNION\n" );
Print_Domain( DST, D->next, pname );
}
return;
} /* Print_Domain */
/*
* Given a list of parametrized vertices and an array of parameter names, Print
* a list of parametrized vertices in a comprehensible format.
*/
void Param_Vertices_Print(FILE *DST, Param_Vertices *PV, const char **param_names)
{
Polyhedron *poly;
while(PV) {
fprintf(DST, "Vertex :\n" );
Print_Vertex(DST,PV->Vertex,param_names);
/* Pour le domaine : */
fprintf(DST, " If :\n" );
poly = Constraints2Polyhedron(PV->Domain,200);
Print_Domain(DST,poly,param_names);
Domain_Free(poly);
PV = PV->next;
}
return;
} /* Param_Vertices_Print */
/*
* Given a polyhedron 'Din' in combined data and parametre space, a context
* polyhedron 'Cin' representing the constraints on the parameter space and
* a working space size 'working_space', return a parametric polyhedron with
* a list of distinct validity domains and a complete list of valid vertices
* associated to each validity domain.
*/
Param_Polyhedron *Polyhedron2Param_Domain(Polyhedron *Din,Polyhedron *Cin,int working_space) {
Param_Polyhedron *result;
Param_Domain *D;
POL_ENSURE_FACETS(Din);
POL_ENSURE_VERTICES(Din);
POL_ENSURE_FACETS(Cin);
POL_ENSURE_VERTICES(Cin);
if (emptyQ(Din) || emptyQ(Cin))
return NULL;
#ifdef DEBUGPP
fprintf(stderr,"Polyhedron2Param_Polyhedron algorithm starting at : %.2fs\n",
(float)clock()/CLOCKS_PER_SEC);
#endif
/* Find the m-faces, keeping the corresponding domains */
/* in the linked list PDomains */
result = Find_m_faces(&Din,Cin,1,working_space,NULL,NULL);
#ifdef DEBUGPP
if(result) fprintf(stderr, "Number of vertices : %d\n",result->nbV);
fprintf(stderr,"Vertices found at : %.2fs\n",(float)clock()/CLOCKS_PER_SEC);
#endif
/* Processing of PVResult and PDomains */
if(result && Cin->Dimension>0) /* at least 1 parameter */
Compute_PDomains(result->D,result->nbV,working_space);
if(result && CEqualities)
for(D=result->D;D;D=D->next)
D->Domain = Add_CEqualities(D->Domain);
Polyhedron_Free(CEqualities);
#ifdef DEBUGPP
fprintf(stderr, "domains found at : %.2fs\n", (float)clock()/CLOCKS_PER_SEC);
#endif
return(result);
} /* Polyhedon2Param_Domain */
/*
*
*/
Param_Polyhedron *Polyhedron2Param_SimplifiedDomain(Polyhedron **Din,Polyhedron *Cin,int working_space,Polyhedron **CEq,Matrix **CT) {
Param_Polyhedron *result;
assert(CEq != NULL);
assert(CT != NULL);
POL_ENSURE_FACETS(*Din);
POL_ENSURE_VERTICES(*Din);
POL_ENSURE_FACETS(Cin);
POL_ENSURE_VERTICES(Cin);
#ifdef DEBUGPP
fprintf(stderr,"Polyhedron2Param_Polyhedron algorithm starting at : %.2fs\n",
(float)clock()/CLOCKS_PER_SEC);
#endif
/* Find the m-faces, keeping the corresponding domains */
/* in the linked list PDomains */
result = Find_m_faces(Din,Cin,1,working_space,CEq,CT);
#ifdef DEBUGPP
if(result) fprintf(stderr, "Number of vertices : %d\n",result->nbV);
fprintf(stderr,"Vertices found at : %.2fs\n",(float)clock()/CLOCKS_PER_SEC);
#endif
/* Processing of PVResult and PDomains */
if(result && Cin->Dimension>0) /* at least 1 parameter */
Compute_PDomains(result->D,result->nbV,working_space);
/* Removed this, Vin100, March 01 */
/* if(result && CEqualities )
for(D=result->D;D;D=D->next)
D->Domain = Add_CEqualities(D->Domain);
*/
#ifdef DEBUGPP
fprintf(stderr, "domains found at : %.2fs\n", (float)clock()/CLOCKS_PER_SEC);
#endif
return(result);
} /* Polyhedron2Param_SimplifiedDomain */
/*
* Free the memory allocated to a list of validity domain of a parametrized
* polyhedron.
*/
void Param_Domain_Free(Param_Domain *PD) {
Param_Domain *next_pd;
while(PD) {
free(PD->F);
Domain_Free(PD->Domain);
next_pd = PD->next;
free(PD);
PD = next_pd;
}
return;
} /* Param_Domain_Free */
/*
* Free the memory allocated to a parametric polyhedron 'P'
*/
void Param_Polyhedron_Free(Param_Polyhedron *P) {
if (!P) return;
Param_Vertices_Free(P->V);
Param_Domain_Free(P->D);
if (P->Constraints)
Matrix_Free(P->Constraints);
if (P->Rays)
Matrix_Free(P->Rays);
free(P);
return;
} /* Param_Polyhedron_Free */
/*
* Scales the parametric polyhedron such that all vertices are integer.
*/
void Param_Polyhedron_Scale_Integer(Param_Polyhedron *PP, Polyhedron **P,
Value *det, unsigned MaxRays)
{
int i;
int nb_param, nb_vars;
Vector *denoms;
Param_Vertices *V;
Value global_var_lcm;
Matrix *expansion;
value_set_si(*det, 1);
if (!PP->nbV)
return;
nb_param = PP->D->Domain->Dimension;
nb_vars = PP->V->Vertex->NbRows;
/* Scan the vertices and make an orthogonal expansion of the variable
space */
/* a- prepare the array of common denominators */
denoms = Vector_Alloc(nb_vars);
value_init(global_var_lcm);
/* b- scan the vertices and compute the variables' global lcms */
for (V = PP->V; V; V = V->next)
for (i = 0; i < nb_vars; i++)
value_lcm(denoms->p[i], denoms->p[i], V->Vertex->p[i][nb_param+1]);
value_set_si(global_var_lcm, 1);
for (i = 0; i < nb_vars; i++) {
value_multiply(*det, *det, denoms->p[i]);
value_lcm(global_var_lcm, global_var_lcm, denoms->p[i]);
}
/* scale vertices */
for (V = PP->V; V; V = V->next)
for (i = 0; i < nb_vars; i++) {
Vector_Scale(V->Vertex->p[i], V->Vertex->p[i], denoms->p[i], nb_param+1);
Vector_Normalize(V->Vertex->p[i], nb_param+2);
}
/* the expansion can be actually writen as global_var_lcm.L^{-1} */
/* this is equivalent to multiply the rows of P by denoms_det */
for (i = 0; i < nb_vars; i++)
value_division(denoms->p[i], global_var_lcm, denoms->p[i]);
/* OPT : we could use a vector instead of a diagonal matrix here (c- and d-).*/
/* c- make the quick expansion matrix */
expansion = Matrix_Alloc(nb_vars+nb_param+1, nb_vars+nb_param+1);
for (i = 0; i < nb_vars; i++)
value_assign(expansion->p[i][i], denoms->p[i]);
for (i = nb_vars; i < nb_vars+nb_param+1; i++)
value_assign(expansion->p[i][i], global_var_lcm);
/* d- apply the variable expansion to the polyhedron */
if (P)
*P = Polyhedron_Preimage(*P, expansion, MaxRays);
Matrix_Free(expansion);
value_clear(global_var_lcm);
Vector_Free(denoms);
}
|