1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
/* Copyright (c) 1997-2015
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef POLYMAKE_HERMITE_NORMAL_FORM_H
#define POLYMAKE_HERMITE_NORMAL_FORM_H
#include <iostream>
#include "polymake/client.h"
#include "polymake/pair.h"
#include "polymake/SparseMatrix.h"
#include "polymake/Bitset.h"
#include "polymake/Array.h"
#include "polymake/linalg.h"
#include "polymake/numerical_functions.h"
#include "polymake/list"
#include "polymake/GenericStruct.h"
namespace polymake { namespace common {
template <typename MatrixTop, typename E>
std::pair<Matrix<E>, SparseMatrix<E> > hermite_normal_form(const GenericMatrix<MatrixTop, E>& M, bool reduced = true){
SparseMatrix2x2<E> U;
SparseMatrix<E> R, S;
Matrix<E> N(M);
const int rows = M.rows();
const int cols = M.cols();
R = unit_matrix<E>(cols);
int current_row = 0, current_col = 0;
for(int i = 0; i<rows; i++){
bool nonzero = true;
// cout << N(i,current_col) << endl;
// Find a non-zero entry and move it to here.
if(N(i,current_col) == 0){
nonzero = false;
for(int j = current_col; j<cols; j++){
if(N(i,j) != 0){
nonzero = true;
U.i = current_col;
U.j = j;
U.a_ii = 0;
U.a_ij = 1;
U.a_ji = 1;
U.a_jj = 0;
R.multiply_from_right(U);
N.multiply_from_right(U);
}
}
}
// cout << pm::Matrix<E>(N) << endl;
if(!nonzero){
// cout << "Continueing" << endl;
current_row++;
continue;
}
// GCD part of algorithm.
for(int j = current_col+1; j<cols; j++){
// cout << " " << i << " " << j << endl;
if(N(i,j) != 0){
U.i = current_col;
U.j = j;
ExtGCD<E> egcd = ext_gcd(N(i,current_col), N(i,j));
U.a_ii = egcd.p;
U.a_ji = egcd.q;
U.a_ij = egcd.k2;
U.a_jj = -egcd.k1;
R.multiply_from_right(U);
N.multiply_from_right(U);
// cout << U.i<<": "<<U.a_ii <<" " << U.a_ij<<endl<<U.j <<": " <<U.a_ji<<" " << U.a_jj << endl;
}
// cout << pm::Matrix<E>(N) << endl;
}
if(N(i,current_col)<0){
S = unit_matrix<E>(cols);
S(current_col,current_col) = -1;
R = R*S;
N = N*S;
}
if(reduced){
for(int j=0; j<current_col; j++){
U.i = j;
U.j = current_col;
E factor = N(i,j) % N(i,current_col);
if(factor < 0) factor += N(i,current_col);
factor = (N(i,j) - factor)/N(i,current_col);
U.a_ii = 1;
U.a_ji = -factor;
U.a_ij = 0;
U.a_jj = 1;
R.multiply_from_right(U);
N.multiply_from_right(U);
}
}
current_col++;
if(current_col == cols){
break;
}
// cout << i << " " << current_row << endl;
}
return std::pair<Matrix<E>, SparseMatrix<E> >(N, R);
}
}
}
#endif
|