File: hermite_normal_form.h

package info (click to toggle)
polymake 3.0r2-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 19,752 kB
  • ctags: 30,928
  • sloc: cpp: 151,785; perl: 32,510; ansic: 3,597; java: 2,654; python: 278; makefile: 181; xml: 103; sh: 79
file content (131 lines) | stat: -rw-r--r-- 3,770 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/* Copyright (c) 1997-2015
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/


#ifndef POLYMAKE_HERMITE_NORMAL_FORM_H
#define POLYMAKE_HERMITE_NORMAL_FORM_H

#include <iostream>
#include "polymake/client.h"
#include "polymake/pair.h"
#include "polymake/SparseMatrix.h"
#include "polymake/Bitset.h"
#include "polymake/Array.h"
#include "polymake/linalg.h"
#include "polymake/numerical_functions.h"
#include "polymake/list"
#include "polymake/GenericStruct.h"

namespace polymake { namespace common {



template <typename MatrixTop, typename E>
std::pair<Matrix<E>, SparseMatrix<E> > hermite_normal_form(const GenericMatrix<MatrixTop, E>& M, bool reduced = true){
   SparseMatrix2x2<E> U;
   SparseMatrix<E> R, S;
   Matrix<E> N(M);
   
   
   const int rows = M.rows();
   const int cols = M.cols();
   
   R = unit_matrix<E>(cols);

   int current_row = 0, current_col = 0;

   for(int i = 0; i<rows; i++){
      bool nonzero = true;
      // cout << N(i,current_col) << endl;
      // Find a non-zero entry and move it to here.
      if(N(i,current_col) == 0){
         nonzero = false;
         for(int j = current_col; j<cols; j++){
            if(N(i,j) != 0){
               nonzero = true;
               U.i = current_col;
               U.j = j;
               U.a_ii = 0;
               U.a_ij = 1;
               U.a_ji = 1;
               U.a_jj = 0;
               R.multiply_from_right(U);
               N.multiply_from_right(U);
            }
         }
      }
      // cout << pm::Matrix<E>(N) << endl;
      if(!nonzero){
         // cout << "Continueing" << endl;
         current_row++;
         continue;
      }
      // GCD part of algorithm.
      for(int j = current_col+1; j<cols; j++){
         // cout << "  " << i << " " << j << endl;
         if(N(i,j) != 0){
            U.i = current_col;
            U.j = j;
            ExtGCD<E> egcd = ext_gcd(N(i,current_col), N(i,j));
            U.a_ii = egcd.p;
            U.a_ji = egcd.q;
            U.a_ij = egcd.k2;
            U.a_jj = -egcd.k1;
            R.multiply_from_right(U);
            N.multiply_from_right(U);
            // cout << U.i<<": "<<U.a_ii <<" " << U.a_ij<<endl<<U.j <<": " <<U.a_ji<<" " << U.a_jj << endl;
         }
         // cout << pm::Matrix<E>(N) << endl;
      }
      if(N(i,current_col)<0){
         S = unit_matrix<E>(cols);
         S(current_col,current_col) = -1;
         R = R*S;
         N = N*S;
      }
      if(reduced){
         for(int j=0; j<current_col; j++){
            U.i = j;
            U.j = current_col;
            E factor = N(i,j) % N(i,current_col);
            if(factor < 0) factor += N(i,current_col);
            factor = (N(i,j) - factor)/N(i,current_col);
            U.a_ii = 1;
            U.a_ji = -factor;
            U.a_ij = 0;
            U.a_jj = 1;
            R.multiply_from_right(U);
            N.multiply_from_right(U);
         }
      }
      current_col++;
      if(current_col == cols){
         break;
      }
      // cout << i << " " << current_row << endl;
   }

   

   return std::pair<Matrix<E>, SparseMatrix<E> >(N, R);

}



}
}
#endif