File: tropical_parser.rules

package info (click to toggle)
polymake 3.0r2-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 19,752 kB
  • ctags: 30,928
  • sloc: cpp: 151,785; perl: 32,510; ansic: 3,597; java: 2,654; python: 278; makefile: 181; xml: 103; sh: 79
file content (231 lines) | stat: -rw-r--r-- 10,242 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#  Copyright (c) 1997-2015
#  Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
#  http://www.polymake.org
#
#  This program is free software; you can redistribute it and/or modify it
#  under the terms of the GNU General Public License as published by the
#  Free Software Foundation; either version 2, or (at your option) any
#  later version: http://www.gnu.org/licenses/gpl.txt.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#-------------------------------------------------------------------------------

# This file contains methods to parse a tropical polynomial in the form
# "max(3x+4,...)" and the like.

# @category Data Conversion
# This converts a string into a tropical polynomial. The syntax for the string is as follows:
# It is of the form "min(...)" or "max(...)" or "min{...}" or "max{...}", where ...
# is a comma-separated list of sums of the form "a + bx + c + dy + ...", where a,c are 
# rational numbers, b,d are Ints and x,y are variables. 
# Such a sum can contain several such terms for the same variable and they need not be in any order. 
# Any text that starts with a letter and does not contain any of +-*,(){} or whitespace can be a variable.
# A term in a sum can be of the form "3x", "3*x", but "x3"will be interpreted as 1 * "x3".
# Coefficients should not contain letters and there is no evaluation of arithmetic, i.e. "(2+4)*x" does 
# not work (though "2x+4x" would be fine). 
# In fact, further brackets should only be used (but are not necessary!) for single coefficienst, 
# e.g. "(-3)*x".
# Warning: The parser will remove all brackets before parsing the individual sums.
# If no further arguments are given, the function will take the number of occuring variables
# as total number of variables and create a ring for the result. The variables will be sorted alphabetically.
# @param String s The string to be parsed
# @param String vars Optional. A list of variables. If this is given, all variables used in s must match one of the variables in this list. 
# @return Polynomial<TropicalNumber<Addition,Rational> >, where Addition depends on 
# whether min or max was used in the string.
user_function toTropicalPolynomial(String; @) {
	my ($string,@vars) = @_;

	#Remove any whitespace before parsing
	$string =~ s/\s+//g;

	#Check if variables have been given
	my $vars_defined = (scalar(@vars) > 0);
	my $varset = new Set<String>(\@vars);
	if($vars_defined) {
		#If there are double variables, throw an error
		if( $varset->size() < scalar(@vars)) {
			die "Error: Variable names must be unique.";
		}
	}

	#First separate min/max from the list of the functions
	# The first part will contain min or max, the second the rest
	my @minmax_separator = ($string =~ /^(max|min)[\(\{](.+)[\)\}]$/i);
	
	if(scalar(@minmax_separator) != 2) {
		die "Error: Wrong syntax. See documentation.";
	}

	#Determine whether we're using min or max
	my $uses_min = ($minmax_separator[0] =~ /^min$/i);

	#Remove any brackets from the function list and separate by commas
	$minmax_separator[1] =~ s/[\(\{\)\}]+//g;
	my @functionlist = split(/,/,$minmax_separator[1]);

	#This will store the monomials
	#The i-th element corresponds to the i-th function. It is a reference to a 
	#hash, which maps variable names to exponents.
	# (We need this, since we might not know until the end how many variables we have and
	# what order they appear in)
	my @monomial_maps=();

	#This stores the coefficients of each function.
	my $coefficients = $uses_min ? (new Vector<TropicalNumber<Min> >(scalar(@functionlist))) :
												(new Vector<TropicalNumber<Max> >(scalar(@functionlist)));
	
	#Now parse every single function by splitting at + or -
	for my $index (0 .. scalar(@functionlist)-1) {
		my %functionCoeffMap = ();

		$coefficients->[$index] = $uses_min ? (new TropicalNumber<Min>(0)) : (new TropicalNumber<Max>(0));

		#We split along any consecutive sequence of + and -, keeping the actual signs for counting
	  	my @termlist = split(/[\+\-]+/,$functionlist[$index]); #We split along any consecutive sequence of + and -
	  	my @signlist = ($functionlist[$index] =~ /[\+\-]+/g);

		#If the first terms empty that means there are signs before the actual first term
		if($termlist[0] eq "") {
			shift(@termlist);
		}
		#If not then we don't have a sign for the first term and add it
		else {
			@signlist = ("+",@signlist);
		}
		#If the last term is empty that means there is an empty term at the end. 
		if($termlist[scalar(@termlist)-1] eq "") {
			die "Error: Empy term at the end of function $functionlist[$index]";
		}

		#Now every element in signlist corresponds to an element in termlist. We count the number of -'s
		#to determine the actual sign.
		for my $termindex (0 .. scalar(@termlist)-1) {
			my $minussigns = scalar(($signlist[$termindex] =~ tr/\-//));
			if ($minussigns % 2) { #If the number of -'s is odd, set sign to -
				$termlist[$termindex] = "-" . $termlist[$termindex];
			}
		}
		
		#Now parse every single term
		for my $term (@termlist){
			#Separate into coefficient and variable
	      my @termsep = ($term =~ /^(\-?[^a-zA-Z\*]*)?\*?([a-zA-Z]+[^\+\-\(\)\{\}]*)?$/);

			#Check for basic validity
			#If both parts are empty, we have a term of the form "*", which is nonsense
			if(scalar(@termsep) != 2) {
				die "Error: $term has invalid form. See documentation for allowed syntax.";
			}
			if($termsep[0] eq "" && $termsep[1] eq "") {
				die "Error: $term has invalid form. See documentation for allowed syntax.";
			}

			#Parse the coefficient (if there is none, set it to 1, since there must be a variable)
			my $rational_termcoeff = new Rational($termsep[0] eq ""? 1: ($termsep[0] eq "-"? -1 : $termsep[0]));
			my $termcoeff = $uses_min? (new TropicalNumber<Min>($rational_termcoeff)) : (new TropicalNumber<Max>($rational_termcoeff));

			#If there's no variable, add to the coefficient, otherwise add to the correct monomial
			#(Note that we're already using tropical arithmetic here!)
			if($termsep[1] eq "") {
				$coefficients->[$index] *= $termcoeff;
			}
			else {
				#Add the variable, if none were given in the function call. 
				if(!$vars_defined) {
					$varset = $varset + (new String($termsep[1]));
				}
				#Otherwise check if it's an allowed variable
				else {
					if(!$varset->contains($termsep[1])) {
						die "Error: Variable $termsep[1] is not in the list of variables.";
					}
				}
			}

			#Save the coefficient in the hash map
			if(!defined($functionCoeffMap{$termsep[1]})) {
				$functionCoeffMap{$termsep[1]} = $termcoeff;
			}
			else {
				$functionCoeffMap{$termsep[1]} *= $termcoeff;
			}			
		}#END parse all terms
		
		$monomial_maps[$index] = \%functionCoeffMap;
	}#END for(functionlist)

	#If no variables were given, we remove double variables and sort them alphabetically
	if(!$vars_defined) {
		if($varset->size() == 0) { die "Error: There must be at least one variable.";}
		@vars = sort(@{$varset});		
	}

	#Now create exponent matrix
	my $monom_matrix = new Matrix<Int>(scalar(@functionlist), scalar(@vars));
	for my $func (0 .. scalar(@functionlist)-1) {
		my $hashref = $monomial_maps[$func];
		my %monmap = %$hashref;
		for my $v (0 .. scalar(@vars)-1) {
			$monom_matrix->elem($func,$v) = defined($monmap{$vars[$v]})? $monmap{$vars[$v]} : 0;
		}
	}

	#Create a tropical ring
	my $ring = $uses_min? (new Ring<TropicalNumber<Min> >(scalar(@vars))) :
								(new Ring<TropicalNumber<Max> >(scalar(@vars)));
	return $uses_min?
		(new Polynomial<TropicalNumber<Min> >($monom_matrix,$coefficients,$ring)) :
		(new Polynomial<TropicalNumber<Max> >($monom_matrix,$coefficients,$ring));

}#END toTropicalPolynomial(String,...)

# @category Data Conversion
# Same as [[toTropicalPolynomial]](String,...), except that the result will live in
# the specified ring.
# @param String s The string to be parsed
# @param Ring<TropicalNumber<Addition,Rational> > r The polynomial ring in which the result will live.
# By default, all variables in s must match variables of the ring (this can be changed with the next argument)
# and the ring must be over the TropicalNumbers.
# @param Bool match_variables_by_order Optional and false by default. If true, variables in //s// can be arbitrary,
# though their total number has to match the total number of ring variables. The variables of the string
# will be assigned to ring variables in alphabetical order.
# @return Polynomial<TropicalNumber<Addition,Rational> >
user_function toTropicalPolynomial<Addition>(String,Ring<TropicalNumber<Addition> >; $=0) {
	my ($string,$ring,$match_variables_by_order) = @_;
	#Need to convert variables to strings
	my $f = toTropicalPolynomial($string, $match_variables_by_order? () : (map {"$_"} $ring->variables) );

	#Need to check if number of variables match
	if(!$match_variables_by_order) {
		if($f->monomials_as_matrix->cols() != $ring->n_vars()) {
			die "Number of variables of polynomial and ring do not match.";
		}
	}

	#Now convert to polynomial in the given ring
	return map_poly($f,$ring,!$match_variables_by_order);
}

# This functions converts a polynomial in the same number of variables as a given ring
# to a polynomial in that ring. Additionally, it gives out a helpful error message, if the
# tropical additions don't match (Without this additional function, one just gets a long
# compiler error).
function map_poly<Addition1,Addition2>(Polynomial<TropicalNumber<Addition1> >, Ring<TropicalNumber<Addition2> >, $) {
	my ($f,$ring, $fill_up_variables) = @_;
	if(Addition1->orientation() != Addition2->orientation()) {
		die "Error: Polynomial uses a different tropical addition than the ring";
	}
	else {
		my $mon_matrix = $f->monomials_as_matrix;
		if($fill_up_variables) {
			if($mon_matrix->cols() > $ring->n_vars()) {
				die "Polynomial cannot lie in ring. Too many variables.";
			}
			$mon_matrix = $mon_matrix | new Matrix<Int>($mon_matrix->rows(), $ring->n_vars - $mon_matrix->cols());
		}
		return new Polynomial<TropicalNumber<Addition2> >($mon_matrix, $f->coefficients_as_vector,$ring);
	}
}