1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
/* Copyright (c) 1997-2015
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef POLYMAKE_GRAPH_BFS_ITERATOR_H
#define POLYMAKE_GRAPH_BFS_ITERATOR_H
#include "polymake/GenericGraph.h"
#include "polymake/Bitset.h"
#include "polymake/list"
#include "polymake/vector"
#include <cassert>
namespace polymake { namespace graph {
template <typename Dist=int>
class NodeVisitor {
protected:
std::vector<Dist> dist;
public:
NodeVisitor() {}
template <typename Graph>
NodeVisitor(const GenericGraph<Graph>& G, int start_node)
: dist(G.top().dim(), Dist(-1))
{
if (!dist.empty()) dist[start_node]=0;
}
template <typename Graph>
void reset(const GenericGraph<Graph>&, int start_node)
{
fill(pm::entire(dist), Dist(-1));
if (!dist.empty()) dist[start_node]=0;
}
bool seen(int n) const { return dist[n]>=0; }
void add(int n, int n_from) { dist[n]=dist[n_from]+1; }
static const bool check_edges=false;
void check(int,int) {}
const Dist& operator[] (int n) const { return dist[n]; }
};
template <bool _inversed=false>
class BoolNodeVisitor {
protected:
Bitset visited;
int n_nodes;
public:
BoolNodeVisitor() {}
template <typename Graph>
BoolNodeVisitor(const GenericGraph<Graph>& G, int start_node)
: visited(G.top().dim(), _inversed && !G.top().has_gaps()), n_nodes(G.nodes())
{
if (_inversed && G.top().has_gaps()) visited=nodes(G);
if (G.top().dim()) add(start_node);
}
template <typename Graph>
void reset(const GenericGraph<Graph>& G, int start_node)
{
if (_inversed) {
if (G.top().has_gaps())
visited=nodes(G);
else
visited=sequence(0,n_nodes);
visited-=start_node;
} else {
visited.clear();
visited+=start_node;
}
}
bool seen(int n) const { return _inversed^visited.contains(n); }
void add(int n, int=0) { if (_inversed) visited-=n; else visited+=n; }
static const bool check_edges=false;
void check(int,int) {}
const Bitset& get_visited_nodes() const { return visited; }
};
template <typename> class Visitor;
template <typename> class Reversed;
template <typename Graph, typename Params=void>
class BFSiterator {
public:
typedef typename pm::extract_type_param<Params, Visitor, BoolNodeVisitor<> >::type visitor_type;
static const bool reverse_edges=pm::extract_bool_param<Params,Reversed>::value;
protected:
const Graph *graph;
std::list<int> queue;
visitor_type visitor;
int unvisited;
template <typename EdgeList>
void next_step(int n, const EdgeList& edge_list)
{
for (typename Entire<EdgeList>::const_iterator e=entire(edge_list); !e.at_end(); ++e) {
const int nn= reverse_edges ? e.from_node() : e.to_node();
if (visitor.seen(nn)) {
if (visitor.check_edges) visitor.check(nn,n);
} else {
visitor.add(nn,n);
queue.push_back(nn);
--unvisited;
}
}
}
public:
typedef std::forward_iterator_tag iterator_category;
typedef int value_type;
typedef const int& reference;
typedef const int* pointer;
typedef ptrdiff_t difference_type;
typedef BFSiterator iterator;
typedef BFSiterator const_iterator;
BFSiterator() : graph(0) {}
BFSiterator(const Graph& graph_arg, int start_node)
: graph(&graph_arg), visitor(graph_arg, start_node), unvisited(graph_arg.nodes()-1)
{
if (unvisited>=0) {
if (POLYMAKE_DEBUG) {
if (start_node<0 || start_node>=graph->dim())
throw std::runtime_error("BFSiterator - start node out of range");
}
queue.push_back(start_node);
}
}
reference operator* () const { return queue.front(); }
pointer operator-> () const { return &queue.front(); }
iterator& operator++ ()
{
const int n=queue.front(); queue.pop_front();
if (visitor.check_edges || unvisited>0) {
if (reverse_edges)
next_step(n, graph->in_edges(n));
else
next_step(n, graph->out_edges(n));
}
return *this;
}
const iterator operator++ (int) { iterator copy(*this); operator++(); return copy; }
void skip_node() { queue.pop_front(); }
int unvisited_nodes() const { return unvisited; }
const visitor_type& node_visitor() const { return visitor; }
reference last_unvisited() const { return queue.back(); }
bool at_end() const { return queue.empty(); }
bool operator== (const iterator& it) const
{
return at_end() ? it.at_end() : !it.at_end() && queue.front()==it.queue.front();
}
bool operator!= (const iterator& it) const { return !operator==(it); }
void reset(int start_node)
{
const int dim=graph->dim();
if (dim>0) {
if (POLYMAKE_DEBUG) {
if (start_node<0 || start_node>=dim)
throw std::runtime_error("BFSiterator::reset - start node out of range");
}
queue.clear();
visitor.reset(*graph,start_node);
queue.push_back(start_node);
unvisited=graph->nodes()-1;
}
}
};
} }
namespace pm {
template <typename Graph, typename Params>
struct check_iterator_feature< polymake::graph::BFSiterator<Graph,Params>, end_sensitive > : True {};
}
#endif // POLYMAKE_GRAPH_BFS_ITERATOR_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|