1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/* Copyright (c) 1997-2015
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef POLYMAKE_GRAPH_HASSE_DIAGRAM_H
#define POLYMAKE_GRAPH_HASSE_DIAGRAM_H
#include "polymake/client.h"
#include "polymake/Graph.h"
#include "polymake/Set.h"
#include "polymake/Array.h"
#include "polymake/vector"
#include <algorithm>
namespace polymake { namespace graph {
class HasseDiagram {
public:
typedef Graph<Directed> graph_type;
typedef NodeMap< Directed, Set<int> > faces_map_type;
protected:
graph_type G;
faces_map_type F;
std::vector<int> dim_map, count_map;
bool built_min_first;
public:
bool built_dually() const { return !built_min_first; }
HasseDiagram() : F(G) {}
graph_type& graph() { return G; }
const graph_type& graph() const { return G; }
const faces_map_type& faces() const { return F; }
const std::vector<int>& dims() const { return dim_map; }
const std::vector<int>& dim_counts() const { return count_map; }
const Set<int>& face(int n) const { return F[n]; }
Array< Set<int> > dual_faces() const;
int nodes() const { return G.nodes(); }
int edges() const { return G.edges(); }
friend const Nodes<graph_type>& nodes(const HasseDiagram& me) { return pm::nodes(me.G); }
friend const Edges<graph_type>& edges(const HasseDiagram& me) { return pm::edges(me.G); }
friend const AdjacencyMatrix<graph_type>& adjacency_matrix(const HasseDiagram& me) { return pm::adjacency_matrix(me.G); }
bool node_exists(int n) const { return G.node_exists(n); }
bool edge_exists(int n1, int n2) const { return G.edge_exists(n1,n2); }
graph_type::const_out_edge_list_ref out_edges(int n) const { return G.out_edges(n); }
graph_type::const_in_edge_list_ref in_edges(int n) const { return G.in_edges(n); }
graph_type::const_out_adjacent_node_list_ref out_adjacent_nodes(int n) const { return G.out_adjacent_nodes(n); }
graph_type::const_in_adjacent_node_list_ref in_adjacent_nodes(int n) const { return G.in_adjacent_nodes(n); }
int out_degree(int n) const { return G.out_degree(n); }
int in_degree(int n) const { return G.in_degree(n); }
int degree(int n) const { return G.degree(n); }
void clear()
{
G.clear();
dim_map.clear();
}
int dim() const { return dim_map.size()-(built_dually() || !proper_top_node() ? 1 : 2); }
struct node_exists_pred {
const graph_type *G;
node_exists_pred() : G(0) {}
node_exists_pred(const graph_type& G_arg) : G(&G_arg) {}
typedef int argument_type;
typedef bool result_type;
result_type operator() (int n) const { return G->node_exists(n); }
};
typedef SelectedSubset<sequence, node_exists_pred> range_with_gaps;
typedef ContainerUnion< pm::cons<sequence, range_with_gaps> > nodes_of_dim_set;
const sequence node_range_of_dim(int d) const
{
const int D=dim();
if (d>=std::numeric_limits<int>::max()-D)
throw std::runtime_error("HasseDiagram::nodes_of_dim - dimension out of range");
if (d<0) d+=D;
if (D == 0 && d == -1) d = 0;
if (d<0 || d>D)
throw std::runtime_error("HasseDiagram::nodes_of_dim - dimension out of range");
if (d==D)
return sequence(top_node(), 1);
if (built_dually()) d=D-1-d;
return range(dim_map[d], dim_map[d+1]-1);
}
const nodes_of_dim_set nodes_of_dim(int d) const
{
if (G.has_gaps()) return range_with_gaps(node_range_of_dim(d),G);
return node_range_of_dim(d);
}
const sequence node_range_of_dim(int d1, int d2) const
{
const int D=dim();
if (d1<0) d1+=D;
if (d2<0) d2+=D;
if (d1<0 || d2>D || d1>d2)
throw std::runtime_error("HasseDiagram::nodes_of_dim - dimension out of range");
if (d2==D) {
if (built_dually())
return range(0, dim_map[D-d1]-1);
else
return range(dim_map[d1], G.nodes()-1);
}
if (built_dually()) {
const int _d1=d1; d1=D-1-d2; d2=D-1-_d1;
}
return range(dim_map[d1], dim_map[d2+1]-1);
}
const nodes_of_dim_set nodes_of_dim(int d1, int d2) const
{
if (G.has_gaps()) return range_with_gaps(node_range_of_dim(d1,d2),G);
return node_range_of_dim(d1,d2);
}
int dim_of_node(int n) const
{
if (POLYMAKE_DEBUG) {
if (G.invalid_node(n))
throw std::runtime_error("HasseDiagram::dim_of_node - node id out of range or deleted");
}
const int d = std::upper_bound(dim_map.begin(), dim_map.end(), n) - dim_map.begin();
return built_dually() ? dim()-d : d-1;
}
int bottom_node() const
{
return built_dually() ? G.nodes()-1 : 0;
}
int top_node() const
{
return built_dually() ? 0 : G.nodes()-1;
}
bool proper_top_node() const
{
const int d=dim_map.size()-1;
if(d <= 0) return false;
return dim_map[d]-dim_map[d-1]==1 && dim_map[d-1]==top_node();
}
typedef ContainerUnion< pm::cons< IndexedSubset<const faces_map_type&, const graph_type::in_adjacent_node_list&>,
pm::single_value_container< const Set<int>& > > >
max_faces_list;
max_faces_list max_faces() const
{
if (proper_top_node())
return item2container(F[top_node()]);
else
return select(F, G.in_adjacent_nodes(top_node()));
}
protected:
void update_dim_after_squeeze();
public:
void delete_node(int n);
void delete_node_and_squeeze(int n)
{
G.delete_node(n);
for (std::vector<int>::iterator map_end=dim_map.end(), d=std::upper_bound(dim_map.begin(), map_end, n);
d != map_end; ++d)
*d -= 1;
G.squeeze();
update_dim_after_squeeze();
}
template <typename SetTop>
void delete_nodes(const GenericSet<SetTop>& nodes_to_delete)
{
for (typename Entire<SetTop>::const_iterator n=entire(nodes_to_delete.top()); !n.at_end(); ++n)
delete_node(*n);
}
template <typename SetTop>
void delete_nodes_and_squeeze(const GenericSet<SetTop>& nodes_to_delete)
{
if (nodes_to_delete.top().empty()) return;
if (POLYMAKE_DEBUG || !pm::Unwary<SetTop>::value) {
if (!set_within_range(nodes_to_delete, this->nodes()))
throw std::runtime_error("HasseDiagram::delete_nodes - node numbers out of range");
}
typename Entire<SetTop>::const_iterator n=entire(nodes_to_delete.top());
int cnt=0;
typename std::vector<int>::iterator map_end=dim_map.end();
for (typename std::vector<int>::iterator d=std::upper_bound(dim_map.begin(), map_end, *n);
d != map_end; ++d) {
while (!n.at_end() && *n<*d) ++n, ++cnt;
*d -= cnt;
}
for (n=entire(nodes_to_delete.top()); !n.at_end(); ++n) G.delete_node(*n);
G.squeeze();
update_dim_after_squeeze();
}
class _filler {
protected:
mutable HasseDiagram* HD;
public:
_filler(HasseDiagram& HD_arg, bool min_first) : HD(&HD_arg) { if (HD->nodes()) HD->clear(); HD->built_min_first=min_first;}
_filler(const _filler& f) : HD(f.HD) { f.HD=0; }
template <typename SetTop>
int add_node(const GenericSet<SetTop>& vertex_set) const
{
int n=HD->G.nodes();
HD->G.resize(n+1);
HD->F[n]=vertex_set;
return n;
}
template <typename Iterator>
int add_nodes(int n, Iterator vertex_sets) const
{
int n_old=HD->G.nodes();
HD->G.resize(n_old+n);
for (Set<int> *s=&(HD->F[n_old]), *e=s+n; s<e; ++s, ++vertex_sets)
*s=*vertex_sets;
return n_old;
}
/// face n_from must be included in face n_to
void add_edge(int n_from, int n_to) const { HD->G.edge(n_from, n_to); }
void increase_dim() const { HD->next_layer(); }
const graph_type& graph() const { return HD->G; }
const faces_map_type& faces() const { return HD->F; }
~_filler() { if (HD) HD->G.resize(HD->G.nodes()); } // FIXME: w/o effect now!
};
friend _filler filler(HasseDiagram& me, bool min_first) {return _filler(me, min_first); }
perl::Object makeObject() const;
void fromObject(const perl::Object&);
explicit HasseDiagram(const perl::Object& o) : F(G) { fromObject(o); }
friend void operator<< (const perl::Value& v, const HasseDiagram& me);
friend bool operator>> (const perl::Value& v, HasseDiagram& me);
protected:
void next_layer()
{
dim_map.push_back(G.nodes());
}
};
} }
namespace pm { namespace perl {
template <>
struct check_for_magic_storage<polymake::graph::HasseDiagram> : False {};
} }
#endif // POLYMAKE_GRAPH_HASSE_DIAGRAM_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|