1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
/* Copyright (c) 1997-2015
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef POLYMAKE_GRAPH_CONNECTED_H
#define POLYMAKE_GRAPH_CONNECTED_H
#include "polymake/graph/BFSiterator.h"
#include "polymake/PowerSet.h"
namespace polymake { namespace graph {
/// Determine whether a graph is connected.
template <typename Graph>
bool is_connected(const GenericGraph<Graph>& G)
{
if (!G.nodes()) return true;
BFSiterator<Graph> it(G.top(), nodes(G).front());
while (!it.at_end()) {
if (it.unvisited_nodes()==0) return true;
++it;
}
return false;
}
template <typename Graph>
class connected_components_iterator : protected BFSiterator< Graph, Visitor< BoolNodeVisitor<true> > > {
protected:
typedef BFSiterator< Graph, Visitor< BoolNodeVisitor<true> > > BFS;
Set<int> component;
void fill()
{
do {
component+=this->queue.front();
BFS::operator++();
} while (!BFS::at_end());
}
void next()
{
const int n=this->visitor.get_visited_nodes().front();
this->queue.push_back(n);
this->visitor.add(n);
--this->unvisited;
}
public:
typedef std::forward_iterator_tag iterator_category;
typedef Set<int> value_type;
typedef value_type reference;
typedef const value_type* pointer;
typedef ptrdiff_t difference_type;
typedef connected_components_iterator iterator;
typedef iterator const_iterator;
connected_components_iterator() {}
connected_components_iterator(const Graph& graph_arg)
: BFS(graph_arg, graph_arg.nodes() ? nodes(graph_arg).front() : -1)
{
if (this->unvisited>=0) fill();
}
reference operator* () const { return component; }
pointer operator-> () const { return &component; }
iterator& operator++ ()
{
component.clear();
if (BFS::unvisited>0) { next(); fill(); }
return *this;
}
const iterator operator++ (int) { iterator copy(*this); operator++(); return copy; }
bool operator== (const iterator& it) const { return component==it.component; }
bool operator!= (const iterator& it) const { return !operator==(it); }
bool at_end() const { return component.empty(); }
void rewind()
{
if (this->graph->nodes()) {
BFS::reset(nodes(*this->graph).front());
component.clear();
fill();
}
}
};
/// Compute the connected components
template <typename Graph> inline
pm::GraphComponents<const Graph&, connected_components_iterator>
connected_components(const GenericGraph<Graph>& G) { return G.top(); }
namespace {
template<typename Container, typename E>
void add_to(Container& C, const E& e)
{
C.push_back(e);
}
template<typename E>
void add_to(Set<E>& C, const E& e)
{
C += e;
}
} // end anonymous namespace
// compute a spanning tree rooted at vertex root_node,
// optionally restricted to a support set
template<typename GraphType, typename DirType, typename Container>
void
connected_component(const GenericGraph<GraphType, DirType>& G,
Container& C,
int root_node=0,
const Set<int> support=Set<int>())
{
std::list<int> unprocessed_leaves;
Bitset marked; // nodes already included in the tree
unprocessed_leaves.push_back(root_node); // we start the tree at the given node
add_to(C, root_node);
marked.insert(root_node);
while ( !unprocessed_leaves.empty() ) {
const int current = unprocessed_leaves.front();
unprocessed_leaves.pop_front();
const Set<int> neighbours = G.top().adjacent_nodes(current);
for (Entire< Set< int > >::const_iterator v = entire(neighbours); !v.at_end(); ++v)
if ((!support.size() || support.contains(*v))
&& !marked.contains(*v)) {
unprocessed_leaves.push_back(*v);
marked.insert(*v);
add_to(C, *v);
}
}
}
} }
namespace pm {
template <typename Graph>
struct check_iterator_feature< polymake::graph::connected_components_iterator<Graph>, end_sensitive > : True {};
template <typename Graph>
struct check_iterator_feature< polymake::graph::connected_components_iterator<Graph>, rewindable > : True {};
template <typename GraphRef>
class generic_of_GraphComponents<GraphRef, polymake::graph::connected_components_iterator>
: public GenericSet< GraphComponents<GraphRef,polymake::graph::connected_components_iterator>, Set<int>, operations::cmp > {};
}
#endif // POLYMAKE_GRAPH_CONNECTED_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|