1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
/* Copyright (c) 1997-2015
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef ORBITS_H
#define ORBITS_H
#include <polymake/Array.h>
#include <polymake/Set.h>
#include <polymake/Bitset.h>
#include <polymake/Matrix.h>
#include <polymake/ListMatrix.h>
#include <polymake/Polynomial.h>
#include <polymake/permutations.h>
#include <queue>
namespace pm{
namespace operations{
namespace group{
struct on_container{};
struct on_elements{};
struct on_rows{};
struct on_cols{};
template <typename OpRef, typename action_type, typename PERM,
typename op_tag=typename object_traits<typename deref<OpRef>::type>::generic_tag,
typename perm_tag=typename object_traits<PERM>::generic_tag,
typename enabled=True
>
struct action;
// generic action on container with Array<int>
template <typename OpRef, typename PERM, typename op_tag>
struct action<OpRef, on_container, PERM, op_tag, is_container> {
typedef OpRef argument_type;
typedef typename deref<argument_type>::type result_type;
const PERM& perm;
action(const PERM& p)
: perm(p) {}
result_type operator() (typename function_argument<argument_type>::const_type x) const
{
return permuted(x,perm);
}
};
// action on integers (anchor of the on_elements recursion)
template <typename PERM>
struct action<int&, on_elements, PERM, is_scalar, is_container> {
typedef int& argument_type;
typedef typename deref<argument_type>::type result_type;
const PERM& perm;
action(const PERM& p)
: perm(p) {}
result_type operator() (typename function_argument<argument_type>::const_type x) const
{
return perm[x];
}
};
// generic action on elements in a container with Array<int>
template <typename OpRef, typename PERM, typename op_tag>
struct action<OpRef, on_elements, PERM, op_tag, is_container,
typename enable_if<True, (identical< typename object_traits<typename deref<OpRef>::type>::model, is_container>::value && !identical<op_tag, is_matrix>::value) >::type
> {
typedef OpRef argument_type;
typedef typename object_traits<typename deref<argument_type>::type>::persistent_type result_type;
const PERM& perm;
action(const PERM& p)
: perm(p) {}
result_type operator() (typename function_argument<argument_type>::const_type x) const
{
return result_type(attach_operation(x,action<typename deref<argument_type>::type::value_type&, on_elements, PERM>(perm)));
}
};
// generic action on elements in a matrix with Array<int>
template <typename OpRef, typename PERM>
struct action<OpRef, on_elements, PERM, is_matrix, is_container> {
typedef OpRef argument_type;
typedef typename object_traits<typename deref<argument_type>::type>::persistent_type result_type;
const PERM& perm;
action(const PERM& p)
: perm(p) {}
result_type operator() (typename function_argument<argument_type>::const_type x) const
{
return result_type(x.rows(),x.cols(),entire(attach_operation(concat_rows(x),action<typename deref<argument_type>::type::value_type&, on_elements, PERM>(perm))));
}
};
// action on rows of a matrix with Array<int>
template <typename OpRef, typename PERM>
struct action<OpRef, on_rows, PERM, is_matrix, is_container> {
typedef OpRef argument_type;
typedef typename deref<argument_type>::type result_type;
const PERM& perm;
action(const PERM& p)
: perm(p) {}
result_type operator() (typename function_argument< argument_type >::const_type x) const
{
return permuted_rows(x,perm);
}
};
// action on cols of a matrix with Array<int>
template <typename OpRef, typename PERM>
struct action<OpRef, on_cols, PERM, is_matrix, is_container> {
typedef OpRef argument_type;
typedef typename deref<argument_type>::type result_type;
const PERM& perm;
action(const PERM& p)
: perm(p) {}
result_type operator() (typename function_argument< argument_type >::const_type x) const
{
return permuted_cols(x,perm);
}
};
// action on a vector under a matrix group
template <typename OpRef, typename PERM>
struct action<OpRef, on_elements, PERM, is_vector, is_matrix> {
typedef OpRef argument_type;
typedef typename deref<argument_type>::type result_type;
const PERM& mat;
action(const PERM& m)
: mat(m.top()) {}
result_type operator() (typename function_argument<argument_type>::const_type x) const
{
return mat*x;
}
};
// action on the variables of a polyomial with Array<int>
template <typename PERM, typename Coefficient, typename Exponent>
struct action<Polynomial<Coefficient,Exponent>&, on_container, PERM, is_polynomial, is_container> {
typedef Polynomial<Coefficient, Exponent>& argument_type;
typedef typename deref<argument_type>::type result_type;
const PERM& perm;
action(const PERM& p)
: perm(p) {}
result_type operator() (typename function_argument<argument_type>::const_type x) const
{
return Polynomial<Coefficient, Exponent>(action<Matrix<Exponent>, on_cols, PERM>(perm)(x.monomials_as_matrix()), x.coefficients_as_vector(), x.get_ring());
}
};
// action on the variables of a monomial with Array<int>
template <typename PERM, typename Coefficient, typename Exponent>
struct action<Monomial<Coefficient,Exponent>&, on_container, PERM, is_opaque, is_container> {
typedef Monomial<Coefficient,Exponent>& argument_type;
typedef typename deref<argument_type>::type result_type;
const PERM& perm;
action(const PERM& p)
: perm(p) {}
result_type operator() (typename function_argument<argument_type>::const_type x) const
{
return Monomial<Coefficient,Exponent>(action<Vector<Exponent>, on_container, PERM>(perm)(x.get_value()), x.get_ring());
}
};
// generic action on both elements of a pair
template <typename E1, typename E2, typename action_type, typename PERM, typename perm_tag>
struct action<std::pair<E1,E2>&, action_type, PERM, is_composite, perm_tag> {
typedef std::pair<E1,E2>& argument_type;
typedef typename deref<argument_type>::type result_type;
const PERM& perm;
action(const PERM& p)
: perm(p) {}
result_type operator() (typename function_argument<argument_type>::const_type x) const
{
return std::make_pair<E1,E2>(action<E1&, action_type, PERM>(perm)(x.first),action<E2&, action_type, PERM>(perm)(x.second));
}
};
} //end namespace group
} //end namespace operations
} //end namespace pm
namespace polymake {
namespace group {
using pm::operations::group::on_container;
using pm::operations::group::on_elements;
using pm::operations::group::on_rows;
using pm::operations::group::on_cols;
/*
* computes the action on something under one permutation element
*/
template <typename action_type, typename PERM, typename Element>
typename pm::object_traits<Element>::persistent_type
action(const PERM& perm, const Element& element)
{
return pm::operations::group::action<Element&,action_type,PERM>(perm)(element);
}
/*
* computes the action on something under the inverse of a Array<int>
*/
template <typename action_type, typename Element>
typename pm::object_traits<Element>::persistent_type
action_inv(const Array<int>& perm, const Element& element)
{
Array<int> inv(perm.size());
inverse_permutation(perm, inv);
return pm::operations::group::action<Element&,action_type,Array<int> >(inv)(element);
}
/*
* Comutes the orbit of element, where the group is spanned by generators
*/
template<typename action_type, typename PERM, typename Element>
Set< Element > orbit(const Array< PERM >& generators, const Element& element) {
Set< Element > orbit;
orbit += element;
std::queue< Element > q;
q.push(element);
while(!q.empty()) {
Element orbitElement = q.front();
q.pop();
for(typename Entire<Array< PERM > >::const_iterator generator = entire(generators); !generator.at_end(); ++generator) {
Element next = action<action_type>(*generator,orbitElement);
if(!orbit.collect(next)) {
q.push(next);
}
}
}
return orbit;
}
}
}
#endif
|