File: representations.h

package info (click to toggle)
polymake 3.0r2-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 19,752 kB
  • ctags: 30,928
  • sloc: cpp: 151,785; perl: 32,510; ansic: 3,597; java: 2,654; python: 278; makefile: 181; xml: 103; sh: 79
file content (173 lines) | stat: -rw-r--r-- 6,351 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/* Copyright (c) 1997-2015
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#ifndef __GROUP_REPRESENTATIONS_H
#define __GROUP_REPRESENTATIONS_H

#include "polymake/Map.h"
#include "polymake/Matrix.h"
#include "polymake/SparseMatrix.h"
#include "polymake/ListMatrix.h"
#include "polymake/SparseVector.h"
#include "polymake/linalg.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/Vector.h"
#include "polymake/Rational.h"

namespace polymake { namespace group {

namespace {

template<typename SetType>
class InducedAction {
protected:
   int degree;
   const Array<SetType>& domain;
   const Map<SetType, int>& index_of;

   Array<int> inverse_permutation(const Array<int>& perm) const {
      Array<int> inv_perm(perm.size());
      for (int i=0; i<perm.size(); ++i)
         inv_perm[perm[i]] = i;
      return inv_perm;
   }

public:
   InducedAction(int degree, 
                 const Array<SetType>& domain, 
                 const Map<SetType, int>& index_of)
      : degree(degree)
      , domain(domain)
      , index_of(index_of) 
   {}

   int index_of_image(const Array<int>& perm,
                      const SetType& elt) const {
      SetType image;
      image.resize(perm.size());
      for (typename Entire<SetType>::const_iterator sit = entire(elt); !sit.at_end(); ++sit)
         image += perm[*sit];
      return index_of[image];
   }

   int index_of_inverse_image(const Array<int>& perm,
                              const SetType& elt) const {
      Array<int> inv_perm(inverse_permutation(perm));
      SetType inv_image;
      inv_image.resize(inv_perm.size());
      for (typename Entire<SetType>::const_iterator sit = entire(elt); !sit.at_end(); ++sit)
         inv_image += inv_perm[*sit];
      return index_of[inv_image];
   }

   int index_of_inverse_image(const Array<int>& perm,
                              const int elt_index) const {
      return index_of_inverse_image(perm, domain[elt_index]);
   }

   SparseMatrix<Rational> rep(const Array<int>& perm) const {
      SparseMatrix<Rational> rep(degree, degree);
      int col_index(0);
      for (typename Entire<Array<SetType> >::const_iterator dit = entire(domain); !dit.at_end(); ++dit, ++col_index) {
         rep(index_of_image(perm, *dit), col_index) = 1;
      }
      return rep;
   }
};


template<typename InducedAction, typename RowType>
SparseMatrix<Rational> isotypic_projector_impl(const RowType& character,
                                               const InducedAction& induced_action,
                                               int degree,
                                               const Array<Set<Array<int> > >& conjugacy_classes,
                                               int order)
{
   SparseMatrix<Rational> isotypic_projector(degree, degree);
   for (int i=0; i<conjugacy_classes.size(); ++i) {
      for (Entire<Set<Array<int> > >::const_iterator cit = entire(conjugacy_classes[i]); !cit.at_end(); ++cit) {
         isotypic_projector += 
            character[i] // FIXME: conjugate here, once complex character tables are implemented
            * induced_action.rep(*cit);
      }
   }

   //    chi(G.identity())/G.order() * sum([chi(g).conjugate() * rep.rho(g) for g in G])
   return isotypic_projector * character[0] / order;
}

template<typename InducedAction, typename RowType>
ListMatrix<SparseVector<Rational> > 
isotypic_basis_impl(const RowType& character,
                    const InducedAction& induced_action,
                    int degree,
                    const Array<Set<Array<int> > >& conjugacy_classes,
                    int order)
{
   ListMatrix<SparseVector<Rational> > 
      isotypic_basis(0, degree),
      kernel_so_far(unit_matrix<Rational>(degree));
   // we fill the matrix row-wise. The entire matrix is
   //    chi(G.identity())/G.order() * sum([chi(g).conjugate() * rep.rho(g) for g in G])
   // and rep.rho(g) (k, g^{-1}(k)) = 1.
   for (int k=0; k<degree; ++k) {
      SparseVector<Rational> new_row(degree);
      for (int i=0; i<conjugacy_classes.size(); ++i) {
         for (Entire<Set<Array<int> > >::const_iterator cit = entire(conjugacy_classes[i]); !cit.at_end(); ++cit) {
            for (int j=0; j<degree; ++j)
               if (induced_action.index_of_inverse_image(*cit, j) == k)
                  new_row[j] += character[i]; // FIXME: conjugate here, once complex character tables are implemented
         }
      }
      add_row_if_rowspace_increases(isotypic_basis, new_row, kernel_so_far);
   }

   return isotypic_basis * character[0] / order;
}

template<typename SparseMatrixType, typename InducedAction>
IncidenceMatrix<> isotypic_supports_impl(const SparseMatrixType& S,
                                         const Matrix<Rational>& character_table,
                                         const InducedAction& IA,
                                         const Array<Set<Array<int> > >& conjugacy_classes,
                                         int order,
                                         int degree)
{
   const int n_irreps = character_table.rows();
   IncidenceMatrix<> supp(S.rows(), n_irreps);
   for (int i=0; i<n_irreps; ++i) {
      const SparseMatrix<Rational> image = isotypic_projector_impl(character_table[i], IA, degree, conjugacy_classes, order) * T(S);
      int j(0);
      for (Entire<Cols<SparseMatrix<Rational> > >::const_iterator cit = entire(cols(image)); !cit.at_end(); ++cit, ++j)
         if (*cit != zero_vector<Rational>(degree))
            supp(j,i) = 1;
   }
   return supp;
}

} // end anonymous namespace

} }

#endif // __GROUP_REPRESENTATIONS_H


// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: