1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/* Copyright (c) 1997-2015
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef __GROUP_REPRESENTATIONS_H
#define __GROUP_REPRESENTATIONS_H
#include "polymake/Map.h"
#include "polymake/Matrix.h"
#include "polymake/SparseMatrix.h"
#include "polymake/ListMatrix.h"
#include "polymake/SparseVector.h"
#include "polymake/linalg.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/Vector.h"
#include "polymake/Rational.h"
namespace polymake { namespace group {
namespace {
template<typename SetType>
class InducedAction {
protected:
int degree;
const Array<SetType>& domain;
const Map<SetType, int>& index_of;
Array<int> inverse_permutation(const Array<int>& perm) const {
Array<int> inv_perm(perm.size());
for (int i=0; i<perm.size(); ++i)
inv_perm[perm[i]] = i;
return inv_perm;
}
public:
InducedAction(int degree,
const Array<SetType>& domain,
const Map<SetType, int>& index_of)
: degree(degree)
, domain(domain)
, index_of(index_of)
{}
int index_of_image(const Array<int>& perm,
const SetType& elt) const {
SetType image;
image.resize(perm.size());
for (typename Entire<SetType>::const_iterator sit = entire(elt); !sit.at_end(); ++sit)
image += perm[*sit];
return index_of[image];
}
int index_of_inverse_image(const Array<int>& perm,
const SetType& elt) const {
Array<int> inv_perm(inverse_permutation(perm));
SetType inv_image;
inv_image.resize(inv_perm.size());
for (typename Entire<SetType>::const_iterator sit = entire(elt); !sit.at_end(); ++sit)
inv_image += inv_perm[*sit];
return index_of[inv_image];
}
int index_of_inverse_image(const Array<int>& perm,
const int elt_index) const {
return index_of_inverse_image(perm, domain[elt_index]);
}
SparseMatrix<Rational> rep(const Array<int>& perm) const {
SparseMatrix<Rational> rep(degree, degree);
int col_index(0);
for (typename Entire<Array<SetType> >::const_iterator dit = entire(domain); !dit.at_end(); ++dit, ++col_index) {
rep(index_of_image(perm, *dit), col_index) = 1;
}
return rep;
}
};
template<typename InducedAction, typename RowType>
SparseMatrix<Rational> isotypic_projector_impl(const RowType& character,
const InducedAction& induced_action,
int degree,
const Array<Set<Array<int> > >& conjugacy_classes,
int order)
{
SparseMatrix<Rational> isotypic_projector(degree, degree);
for (int i=0; i<conjugacy_classes.size(); ++i) {
for (Entire<Set<Array<int> > >::const_iterator cit = entire(conjugacy_classes[i]); !cit.at_end(); ++cit) {
isotypic_projector +=
character[i] // FIXME: conjugate here, once complex character tables are implemented
* induced_action.rep(*cit);
}
}
// chi(G.identity())/G.order() * sum([chi(g).conjugate() * rep.rho(g) for g in G])
return isotypic_projector * character[0] / order;
}
template<typename InducedAction, typename RowType>
ListMatrix<SparseVector<Rational> >
isotypic_basis_impl(const RowType& character,
const InducedAction& induced_action,
int degree,
const Array<Set<Array<int> > >& conjugacy_classes,
int order)
{
ListMatrix<SparseVector<Rational> >
isotypic_basis(0, degree),
kernel_so_far(unit_matrix<Rational>(degree));
// we fill the matrix row-wise. The entire matrix is
// chi(G.identity())/G.order() * sum([chi(g).conjugate() * rep.rho(g) for g in G])
// and rep.rho(g) (k, g^{-1}(k)) = 1.
for (int k=0; k<degree; ++k) {
SparseVector<Rational> new_row(degree);
for (int i=0; i<conjugacy_classes.size(); ++i) {
for (Entire<Set<Array<int> > >::const_iterator cit = entire(conjugacy_classes[i]); !cit.at_end(); ++cit) {
for (int j=0; j<degree; ++j)
if (induced_action.index_of_inverse_image(*cit, j) == k)
new_row[j] += character[i]; // FIXME: conjugate here, once complex character tables are implemented
}
}
add_row_if_rowspace_increases(isotypic_basis, new_row, kernel_so_far);
}
return isotypic_basis * character[0] / order;
}
template<typename SparseMatrixType, typename InducedAction>
IncidenceMatrix<> isotypic_supports_impl(const SparseMatrixType& S,
const Matrix<Rational>& character_table,
const InducedAction& IA,
const Array<Set<Array<int> > >& conjugacy_classes,
int order,
int degree)
{
const int n_irreps = character_table.rows();
IncidenceMatrix<> supp(S.rows(), n_irreps);
for (int i=0; i<n_irreps; ++i) {
const SparseMatrix<Rational> image = isotypic_projector_impl(character_table[i], IA, degree, conjugacy_classes, order) * T(S);
int j(0);
for (Entire<Cols<SparseMatrix<Rational> > >::const_iterator cit = entire(cols(image)); !cit.at_end(); ++cit, ++j)
if (*cit != zero_vector<Rational>(degree))
supp(j,i) = 1;
}
return supp;
}
} // end anonymous namespace
} }
#endif // __GROUP_REPRESENTATIONS_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|