1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
# Copyright (c) 1997-2015
# Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
# http://www.polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
declare object Representation {
# the underlying permutation group
property GROUP : Group;
# the dimension of the representation
property DEGREE : Int;
# the decomposition into irreducible representations, in the same order as the rows of the GROUP.CHARACTER_TABLE
property IRREDUCIBLE_DECOMPOSITION : Array<Int>;
}
declare object PermutationRepresentationOnSets : Representation {
# the list of sets on which the group acts
property DOMAIN : Array<Set<Int>>;
# the list of sets on which the group acts, ordered by orbits and conjugacy classes
property DOMAIN_IN_ORBIT_ORDER : Array<Set<Int>>;
# the union of all sets in DOMAIN
property UNDERLYING_SET : Set<Int>;
# the function that indexes these sets
property INDEX_OF : Map<Set<Int>, Int>;
# the function that indexes these sets
property INDEX_IN_ORBIT_ORDER_OF : Map<Set<Int>, Int>;
# the character of the representation
property CHARACTER : Array<Int>;
# the lex-min representatives for each orbit
property ORBIT_REPRESENTATIVES : Array<Set<Int>>;
# the size of each orbit
property ORBIT_SIZES : Array<Int>;
rule DEGREE : DOMAIN {
$this->DEGREE = $this->DOMAIN->size;
}
rule UNDERLYING_SET : DOMAIN {
my $s = new Set<Int>;
foreach (@{$this->DOMAIN}) {
$s += $_;
}
$this->UNDERLYING_SET = $s;
}
rule INDEX_OF : DOMAIN {
$this->INDEX_OF(temporary) = index_of($this->DOMAIN);
}
rule INDEX_IN_ORBIT_ORDER_OF : DOMAIN_IN_ORBIT_ORDER {
$this->INDEX_IN_ORBIT_ORDER_OF(temporary) = index_of($this->DOMAIN_IN_ORBIT_ORDER);
}
rule CHARACTER : GROUP.CONJUGACY_CLASS_REPRESENTATIVES, DOMAIN {
my @character = ();
foreach my $ccr (@{$this->GROUP->CONJUGACY_CLASS_REPRESENTATIVES}) {
my $n_fix = 0;
foreach my $set (@{$this->DOMAIN}) {
my @image = ();
foreach (@{$set}) {
push @image, $ccr->[$_];
}
my $image = new Set<Int>(\@image);
if ($image == $set) {
++$n_fix;
}
}
push @character, $n_fix;
}
$this->CHARACTER = new Array<Int>(\@character);
}
rule IRREDUCIBLE_DECOMPOSITION : CHARACTER, GROUP {
$this->IRREDUCIBLE_DECOMPOSITION = irreducible_decomposition($this->CHARACTER, $this->GROUP);
}
rule DOMAIN_IN_ORBIT_ORDER : ORBIT_REPRESENTATIVES, GROUP.CONJUGACY_CLASSES {
my @doo = ();
foreach my $rep (@{$this->ORBIT_REPRESENTATIVES}) {
my $orbit_bag = new Set<Set<Int>>;
foreach my $cc (@{$this->GROUP->CONJUGACY_CLASSES}) {
foreach my $g (@{$cc}) {
my $img = new Set<Int>;
foreach (@{$rep}) {
$img += $g->[$_];
}
$orbit_bag += $img;
}
}
foreach (@{$orbit_bag}) {
push @doo, new Set<Int>($_);
}
}
$this->DOMAIN_IN_ORBIT_ORDER = new Array<Set<Int>>(\@doo);
}
} # end object PermutationRepresentationOnSets
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|