File: action_functions

package info (click to toggle)
polymake 3.2r4-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 22,564 kB
  • sloc: cpp: 153,464; perl: 40,590; ansic: 2,829; java: 2,654; python: 589; sh: 219; xml: 117; makefile: 63
file content (231 lines) | stat: -rw-r--r-- 10,002 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#  Copyright (c) 1997-2018
#  Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
#  http://www.polymake.org
#
#  This program is free software; you can redistribute it and/or modify it
#  under the terms of the GNU General Public License as published by the
#  Free Software Foundation; either version 2, or (at your option) any
#  later version: http://www.gnu.org/licenses/gpl.txt.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#-------------------------------------------------------------------------------

# @category Symmetry
# Construct the induced action of a permutation action on a property that is an ordered collection of sets,
# such as MAX_INTERIOR_SIMPLICES
# @param polytope::Cone c the cone or polytope
# @param PermutationAction a a permutation action on, for example, the vertex indices
# @param String domain the property the induced action should act upon
# @return PermutationActionOnSets
# @example [application polytope] > $c=cube(3, group=>1, character_table=>0);
# > group::induce_set_action($c, $c->GROUP->VERTICES_ACTION, "MAX_INTERIOR_SIMPLICES")->properties();
# | name: induced_set_action_of_ray_action_on_MAX_INTERIOR_SIMPLICES
# | type: PermutationActionOnSets
# | description: induced from ray_action on MAX_INTERIOR_SIMPLICES
# |
# | GENERATORS
# | 5 4 7 6 1 0 3 2 11 10 9 8 30 29 32 31 38 40 39 41 33 36 35 34 37 43 42 45 44 13 12 15 14 20 23 22 21 24 16 18 17 19 26 25 28 27 49 48 47 46 55 54 57 56 51 50 53 52
# | 0 2 1 3 12 14 13 15 16 17 18 19 4 6 5 7 8 9 10 11 21 20 22 24 23 25 27 26 28 29 31 30 32 34 33 35 37 36 46 47 48 49 50 52 51 53 38 39 40 41 42 44 43 45 54 56 55 57
# | 0 4 8 9 1 5 10 11 2 3 6 7 16 20 25 26 12 17 21 27 13 18 22 23 28 14 15 19 24 33 38 42 43 29 34 35 39 44 30 36 40 45 31 32 37 41 50 51 54 55 46 47 52 56 48 49 53 57
# |
# |
# | DOMAIN_NAME
# | MAX_INTERIOR_SIMPLICES

user_function induce_set_action($, $, String; { store_index_of => 0 } ) {
    my ($c, $action, $domain_name, $options) = @_;
    my $dom = $c->give($domain_name);
    my $iod = index_of($dom);
    my $ia = new PermutationActionOnSets("induced_set_action_of_" . $action->name . "_on_$domain_name");
    $ia->GENERATORS = induced_permutations($action->GENERATORS, $dom, $iod);
    $ia->DOMAIN_NAME = $domain_name;
    $ia->description = "induced from " . $action->name . " on $domain_name";

    if (defined($action->lookup("CONJUGACY_CLASS_REPRESENTATIVES"))) {
        $ia->CONJUGACY_CLASS_REPRESENTATIVES = induced_permutations($action->CONJUGACY_CLASS_REPRESENTATIVES, $dom, $iod);
    }

    if ($options->{"store_index_of"}) {
        $ia->INDEX_OF = $iod;
    }

    if (!defined($c->give("GROUP.SET_ACTION", sub { $_->DOMAIN_NAME eq $domain_name } ))) {
        $c->GROUP->add("SET_ACTION", $ia);
    }

    return $ia;
}

function induce_permutation_action($$$$$; $=0) {
    my ($this, $from_action, $on_section, $name, $desc, $homogeneous_action) = @_;
    my $a = new PermutationAction($name);
    $a->GENERATORS = induced_permutations($this->GROUP->$from_action->GENERATORS, $this->$on_section, homogeneous_action=>$homogeneous_action);
    if (defined(my $cc = $this->lookup("GROUP." . $from_action . ".CONJUGACY_CLASS_REPRESENTATIVES"))) {
        $a->CONJUGACY_CLASS_REPRESENTATIVES = induced_permutations($cc, $this->$on_section, homogeneous_action=>$homogeneous_action);
    }
    $a->description = $desc;
    return $a;
}

function induce_matrix_action<Scalar>($$$ Matrix<Scalar>) {
    my ($this, $from_action, $from_section, $dummy) = @_;
    my $a = new MatrixActionOnVectors<Scalar>("matrix_action");
    my @gens;
    foreach (@{$this->GROUP->$from_action->GENERATORS}) {
        my $m1 = new Matrix<Scalar>($this->$from_section);
        my $m2 = new Matrix<Scalar>(permuted_rows($this->$from_section, $_));
        push @gens, transpose(solve_right($m1, $m2));
    }
    $a->GENERATORS = new Array<Matrix<Scalar>>(\@gens);
    if (defined(my $cc = $this->lookup("GROUP.$from_action.CONJUGACY_CLASS_REPRESENTATIVES"))) {
        my @ccr;
        my $m1 = new Matrix<Scalar>($this->$from_section);
        foreach (@{$this->GROUP->$from_action->CONJUGACY_CLASS_REPRESENTATIVES}) {
            my $m2 = new Matrix<Scalar>(permuted_rows($m1, $_));
            push @ccr, transpose(solve_right($m1, $m2));
        }
        $a->CONJUGACY_CLASS_REPRESENTATIVES = new Array<Matrix<Scalar>>(\@ccr);
    }
    $a->description = "induced from action on $from_section";
    return $a;
}

# @category Symmetry
# Construct an implicit action of the action induced on a collection of sets. Only a set of
# orbit representatives is stored, not the full induced action.
# @param PermutationAction original_action the action of the group on indices
# @param String property the name of a property that describes an ordered list of sets on which the group should act
# @return ImplicitActionOnSets the action of the group on the given property, such that only representatives are stored
# @example [application polytope] To construct the implicit action of the symmetry group of a cube on its maximal simplices, type:
# > $c=cube(3, group=>1, character_table=>0);
# > group::induce_implicit_action($c, $c->GROUP->VERTICES_ACTION, $c->GROUP->REPRESENTATIVE_MAX_INTERIOR_SIMPLICES, "MAX_INTERIOR_SIMPLICES")->properties();
# | name: induced_implicit_action_of_ray_action_on_MAX_INTERIOR_SIMPLICES
# | type: ImplicitActionOnSets
# | description: induced from ray_action on MAX_INTERIOR_SIMPLICES
# |
# | GENERATORS
# | 1 0 3 2 5 4 7 6
# | 0 2 1 3 4 6 5 7
# | 0 1 4 5 2 3 6 7
# |
# |
# | DOMAIN_NAME
# | MAX_INTERIOR_SIMPLICES
# |
# | EXPLICIT_ORBIT_REPRESENTATIVES
# | {0 1 2 4}
# | {0 1 2 5}
# | {0 1 2 7}
# | {0 3 5 6}

user_function induce_implicit_action<SetType>($,$, Array<SetType>, $) {
    my ($c, $original_action, $induced_dom_reps, $induced_dom_name) = @_;
    my $orig_name = $original_action->name;
    my @reps = map { new Bitset($_) } @{$induced_dom_reps};
    my $ia = new ImplicitActionOnSets("induced_implicit_action_of_" . $orig_name . "_on_$induced_dom_name");
    $ia->GENERATORS = $original_action->GENERATORS;
    $ia->DOMAIN_NAME = $induced_dom_name;
    $ia->EXPLICIT_ORBIT_REPRESENTATIVES = \@reps;
    $ia->description = "induced from $orig_name on $induced_dom_name";
    if (defined(my $cc = $original_action->lookup("CONJUGACY_CLASS_REPRESENTATIVES"))) {
        $ia->CONJUGACY_CLASS_REPRESENTATIVES = $cc;
    }
    if (!defined($c->GROUP->give("IMPLICIT_SET_ACTION", sub { $_->DOMAIN_NAME eq $induced_dom_name }))) {
        $c->GROUP->add("IMPLICIT_SET_ACTION", $ia);
    }
    return $ia;
}


function combinatorial_symmetries_impl($$$$) {
    my ($p, $incidence_name, $row_action_name, $col_action_name) = @_;
    my $pairs_of_gens = graph::automorphisms($p->$incidence_name);
    my @row_gens = map {$_->first}  @$pairs_of_gens;
    my @col_gens = map {$_->second} @$pairs_of_gens;
    my $row_action = new PermutationAction(GENERATORS=>new Array<Array<Int>>(\@row_gens));
    my $col_action = new PermutationAction(GENERATORS=>new Array<Array<Int>>(\@col_gens));
    my $g = new Group("CombAut");
    $g->description="combinatorial symmetry group";
    if (!defined($p->give("GROUP", "CombAut"))) {
        $p->add("GROUP", $g, $row_action_name=>$row_action, $col_action_name=>$col_action);
    }
    return $row_action;
}

function induced_orbits_impl<Scalar>($$$, Scalar, { homog_action=>0, return_matrix=>1 }) {
    my ($c, $action_name, $generator_name, $dummy, $options) = @_;
    my $n = 0;
    my @reps = ();
    my @orbits = ();
    my @pts_in_orbit_order = ();
    my $all_pts = new Set<Vector<Scalar>>;
    foreach(@{$c->GROUP->$action_name->$generator_name}) {
        my $one_orbit;
        if ($action_name eq "MATRIX_ACTION") {
            $one_orbit = orbit($c->GROUP->$action_name->GENERATORS, new Vector<Scalar>($_));
        } elsif ($options->{homog_action} == 0) {
            $one_orbit = nonhomog_container_orbit($c->GROUP->$action_name->GENERATORS, new Vector<Scalar>($_));
        } else {
            $one_orbit = homog_container_orbit($c->GROUP->$action_name->GENERATORS, new Vector<Scalar>($_));
        }
        $all_pts += $one_orbit;
        if ($n == $all_pts->size()) {
            next;
        }
        push @reps, new Vector<Scalar>($one_orbit->[0]);

        my $orbit_indices = new Set<Int>;
        foreach($n..$n+$one_orbit->size()-1) {
            $orbit_indices += $_;
        }
        push @orbits, $orbit_indices;

        foreach(@{$one_orbit}) {
            push @pts_in_orbit_order, new Vector<Scalar>($_);
        }

        $n += $one_orbit->size();
    }
    my $a = new PermutationAction;
    $a->ORBITS = \@orbits;
    $a->EXPLICIT_ORBIT_REPRESENTATIVE_MATRIX = new Matrix<Scalar>(\@reps);
    $a->description = "induced from $action_name";
    if ($options->{return_matrix} == 1) {
        return (new Matrix<Scalar>(\@pts_in_orbit_order), $a);
    } else {
        return (\@pts_in_orbit_order, $a);
    }
}

function induced_orbits_on_vectors_impl<Scalar>(Array<Matrix<Scalar>>, Matrix<Scalar>) {
    my ($gens, $vecs) = @_;
    my @orbits;
    my $remaining_vecs = new Set<Vector<Scalar>>;
    my $index_of = new HashMap<Vector<Scalar>, Int>;
    my $index=0;
    foreach (0..$vecs->rows()-1) {
        my $v = new Vector<Scalar>($vecs->[$_]);
        $index_of->{$v} = $index++;
        $remaining_vecs += $v;
    }

    while ($remaining_vecs->size()) {
        my $o = orbit($gens, $remaining_vecs->front());
        my @orbit_inds;
        foreach my $w (@{$o}) {
            push @orbit_inds, $index_of->{$w};
        }
        push @orbits, new Set<Int>(\@orbit_inds);
        $remaining_vecs -= $o;
    }
    return new Array<Set<Int>>(\@orbits);
}

# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End: