1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
# Copyright (c) 1997-2018
# Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
# http://www.polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
# @category Symmetry
# Construct the induced action of a permutation action on a property that is an ordered collection of sets,
# such as MAX_INTERIOR_SIMPLICES
# @param polytope::Cone c the cone or polytope
# @param PermutationAction a a permutation action on, for example, the vertex indices
# @param String domain the property the induced action should act upon
# @return PermutationActionOnSets
# @example [application polytope] > $c=cube(3, group=>1, character_table=>0);
# > group::induce_set_action($c, $c->GROUP->VERTICES_ACTION, "MAX_INTERIOR_SIMPLICES")->properties();
# | name: induced_set_action_of_ray_action_on_MAX_INTERIOR_SIMPLICES
# | type: PermutationActionOnSets
# | description: induced from ray_action on MAX_INTERIOR_SIMPLICES
# |
# | GENERATORS
# | 5 4 7 6 1 0 3 2 11 10 9 8 30 29 32 31 38 40 39 41 33 36 35 34 37 43 42 45 44 13 12 15 14 20 23 22 21 24 16 18 17 19 26 25 28 27 49 48 47 46 55 54 57 56 51 50 53 52
# | 0 2 1 3 12 14 13 15 16 17 18 19 4 6 5 7 8 9 10 11 21 20 22 24 23 25 27 26 28 29 31 30 32 34 33 35 37 36 46 47 48 49 50 52 51 53 38 39 40 41 42 44 43 45 54 56 55 57
# | 0 4 8 9 1 5 10 11 2 3 6 7 16 20 25 26 12 17 21 27 13 18 22 23 28 14 15 19 24 33 38 42 43 29 34 35 39 44 30 36 40 45 31 32 37 41 50 51 54 55 46 47 52 56 48 49 53 57
# |
# |
# | DOMAIN_NAME
# | MAX_INTERIOR_SIMPLICES
user_function induce_set_action($, $, String; { store_index_of => 0 } ) {
my ($c, $action, $domain_name, $options) = @_;
my $dom = $c->give($domain_name);
my $iod = index_of($dom);
my $ia = new PermutationActionOnSets("induced_set_action_of_" . $action->name . "_on_$domain_name");
$ia->GENERATORS = induced_permutations($action->GENERATORS, $dom, $iod);
$ia->DOMAIN_NAME = $domain_name;
$ia->description = "induced from " . $action->name . " on $domain_name";
if (defined($action->lookup("CONJUGACY_CLASS_REPRESENTATIVES"))) {
$ia->CONJUGACY_CLASS_REPRESENTATIVES = induced_permutations($action->CONJUGACY_CLASS_REPRESENTATIVES, $dom, $iod);
}
if ($options->{"store_index_of"}) {
$ia->INDEX_OF = $iod;
}
if (!defined($c->give("GROUP.SET_ACTION", sub { $_->DOMAIN_NAME eq $domain_name } ))) {
$c->GROUP->add("SET_ACTION", $ia);
}
return $ia;
}
function induce_permutation_action($$$$$; $=0) {
my ($this, $from_action, $on_section, $name, $desc, $homogeneous_action) = @_;
my $a = new PermutationAction($name);
$a->GENERATORS = induced_permutations($this->GROUP->$from_action->GENERATORS, $this->$on_section, homogeneous_action=>$homogeneous_action);
if (defined(my $cc = $this->lookup("GROUP." . $from_action . ".CONJUGACY_CLASS_REPRESENTATIVES"))) {
$a->CONJUGACY_CLASS_REPRESENTATIVES = induced_permutations($cc, $this->$on_section, homogeneous_action=>$homogeneous_action);
}
$a->description = $desc;
return $a;
}
function induce_matrix_action<Scalar>($$$ Matrix<Scalar>) {
my ($this, $from_action, $from_section, $dummy) = @_;
my $a = new MatrixActionOnVectors<Scalar>("matrix_action");
my @gens;
foreach (@{$this->GROUP->$from_action->GENERATORS}) {
my $m1 = new Matrix<Scalar>($this->$from_section);
my $m2 = new Matrix<Scalar>(permuted_rows($this->$from_section, $_));
push @gens, transpose(solve_right($m1, $m2));
}
$a->GENERATORS = new Array<Matrix<Scalar>>(\@gens);
if (defined(my $cc = $this->lookup("GROUP.$from_action.CONJUGACY_CLASS_REPRESENTATIVES"))) {
my @ccr;
my $m1 = new Matrix<Scalar>($this->$from_section);
foreach (@{$this->GROUP->$from_action->CONJUGACY_CLASS_REPRESENTATIVES}) {
my $m2 = new Matrix<Scalar>(permuted_rows($m1, $_));
push @ccr, transpose(solve_right($m1, $m2));
}
$a->CONJUGACY_CLASS_REPRESENTATIVES = new Array<Matrix<Scalar>>(\@ccr);
}
$a->description = "induced from action on $from_section";
return $a;
}
# @category Symmetry
# Construct an implicit action of the action induced on a collection of sets. Only a set of
# orbit representatives is stored, not the full induced action.
# @param PermutationAction original_action the action of the group on indices
# @param String property the name of a property that describes an ordered list of sets on which the group should act
# @return ImplicitActionOnSets the action of the group on the given property, such that only representatives are stored
# @example [application polytope] To construct the implicit action of the symmetry group of a cube on its maximal simplices, type:
# > $c=cube(3, group=>1, character_table=>0);
# > group::induce_implicit_action($c, $c->GROUP->VERTICES_ACTION, $c->GROUP->REPRESENTATIVE_MAX_INTERIOR_SIMPLICES, "MAX_INTERIOR_SIMPLICES")->properties();
# | name: induced_implicit_action_of_ray_action_on_MAX_INTERIOR_SIMPLICES
# | type: ImplicitActionOnSets
# | description: induced from ray_action on MAX_INTERIOR_SIMPLICES
# |
# | GENERATORS
# | 1 0 3 2 5 4 7 6
# | 0 2 1 3 4 6 5 7
# | 0 1 4 5 2 3 6 7
# |
# |
# | DOMAIN_NAME
# | MAX_INTERIOR_SIMPLICES
# |
# | EXPLICIT_ORBIT_REPRESENTATIVES
# | {0 1 2 4}
# | {0 1 2 5}
# | {0 1 2 7}
# | {0 3 5 6}
user_function induce_implicit_action<SetType>($,$, Array<SetType>, $) {
my ($c, $original_action, $induced_dom_reps, $induced_dom_name) = @_;
my $orig_name = $original_action->name;
my @reps = map { new Bitset($_) } @{$induced_dom_reps};
my $ia = new ImplicitActionOnSets("induced_implicit_action_of_" . $orig_name . "_on_$induced_dom_name");
$ia->GENERATORS = $original_action->GENERATORS;
$ia->DOMAIN_NAME = $induced_dom_name;
$ia->EXPLICIT_ORBIT_REPRESENTATIVES = \@reps;
$ia->description = "induced from $orig_name on $induced_dom_name";
if (defined(my $cc = $original_action->lookup("CONJUGACY_CLASS_REPRESENTATIVES"))) {
$ia->CONJUGACY_CLASS_REPRESENTATIVES = $cc;
}
if (!defined($c->GROUP->give("IMPLICIT_SET_ACTION", sub { $_->DOMAIN_NAME eq $induced_dom_name }))) {
$c->GROUP->add("IMPLICIT_SET_ACTION", $ia);
}
return $ia;
}
function combinatorial_symmetries_impl($$$$) {
my ($p, $incidence_name, $row_action_name, $col_action_name) = @_;
my $pairs_of_gens = graph::automorphisms($p->$incidence_name);
my @row_gens = map {$_->first} @$pairs_of_gens;
my @col_gens = map {$_->second} @$pairs_of_gens;
my $row_action = new PermutationAction(GENERATORS=>new Array<Array<Int>>(\@row_gens));
my $col_action = new PermutationAction(GENERATORS=>new Array<Array<Int>>(\@col_gens));
my $g = new Group("CombAut");
$g->description="combinatorial symmetry group";
if (!defined($p->give("GROUP", "CombAut"))) {
$p->add("GROUP", $g, $row_action_name=>$row_action, $col_action_name=>$col_action);
}
return $row_action;
}
function induced_orbits_impl<Scalar>($$$, Scalar, { homog_action=>0, return_matrix=>1 }) {
my ($c, $action_name, $generator_name, $dummy, $options) = @_;
my $n = 0;
my @reps = ();
my @orbits = ();
my @pts_in_orbit_order = ();
my $all_pts = new Set<Vector<Scalar>>;
foreach(@{$c->GROUP->$action_name->$generator_name}) {
my $one_orbit;
if ($action_name eq "MATRIX_ACTION") {
$one_orbit = orbit($c->GROUP->$action_name->GENERATORS, new Vector<Scalar>($_));
} elsif ($options->{homog_action} == 0) {
$one_orbit = nonhomog_container_orbit($c->GROUP->$action_name->GENERATORS, new Vector<Scalar>($_));
} else {
$one_orbit = homog_container_orbit($c->GROUP->$action_name->GENERATORS, new Vector<Scalar>($_));
}
$all_pts += $one_orbit;
if ($n == $all_pts->size()) {
next;
}
push @reps, new Vector<Scalar>($one_orbit->[0]);
my $orbit_indices = new Set<Int>;
foreach($n..$n+$one_orbit->size()-1) {
$orbit_indices += $_;
}
push @orbits, $orbit_indices;
foreach(@{$one_orbit}) {
push @pts_in_orbit_order, new Vector<Scalar>($_);
}
$n += $one_orbit->size();
}
my $a = new PermutationAction;
$a->ORBITS = \@orbits;
$a->EXPLICIT_ORBIT_REPRESENTATIVE_MATRIX = new Matrix<Scalar>(\@reps);
$a->description = "induced from $action_name";
if ($options->{return_matrix} == 1) {
return (new Matrix<Scalar>(\@pts_in_orbit_order), $a);
} else {
return (\@pts_in_orbit_order, $a);
}
}
function induced_orbits_on_vectors_impl<Scalar>(Array<Matrix<Scalar>>, Matrix<Scalar>) {
my ($gens, $vecs) = @_;
my @orbits;
my $remaining_vecs = new Set<Vector<Scalar>>;
my $index_of = new HashMap<Vector<Scalar>, Int>;
my $index=0;
foreach (0..$vecs->rows()-1) {
my $v = new Vector<Scalar>($vecs->[$_]);
$index_of->{$v} = $index++;
$remaining_vecs += $v;
}
while ($remaining_vecs->size()) {
my $o = orbit($gens, $remaining_vecs->front());
my @orbit_inds;
foreach my $w (@{$o}) {
push @orbit_inds, $index_of->{$w};
}
push @orbits, new Set<Int>(\@orbit_inds);
$remaining_vecs -= $o;
}
return new Array<Set<Int>>(\@orbits);
}
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|