File: action_properties.rules

package info (click to toggle)
polymake 3.2r4-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 22,564 kB
  • sloc: cpp: 153,464; perl: 40,590; ansic: 2,829; java: 2,654; python: 589; sh: 219; xml: 117; makefile: 63
file content (194 lines) | stat: -rw-r--r-- 7,160 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#  Copyright (c) 1997-2018
#  Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
#  http://www.polymake.org
#
#  This program is free software; you can redistribute it and/or modify it
#  under the terms of the GNU General Public License as published by the
#  Free Software Foundation; either version 2, or (at your option) any
#  later version: http://www.gnu.org/licenses/gpl.txt.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#-------------------------------------------------------------------------------

object Action {

   # @category Symmetry
   # The generators of the group action
   property GENERATORS : Array<GeneratorType>;

   # @category Symmetry
   # The degree of the representation. For permutation groups,
   # this is the number of permuted indices, for matrix groups
   # it is the dimension of the vector space the group acts on
   property DEGREE : Int;

   # @category Symmetry
   # The character of the action. The ordering corresponds to the
   # columns of the CHARACTER_TABLE
   property CHARACTER : Array<QuadraticExtension>;

   # @category Symmetry
   # The multiplicities of each irreducible representation in this action.
   # The ordering corresponds to the rows of the CHARACTER_TABLE
   property IRREDUCIBLE_DECOMPOSITION : Array<Int>;

   # @category Symmetry
   # A set of representatives for each conjugacy class.
   # The order of these representatives must agree with the implicit
   # order of the columns of the [[Group::CHARACTER_TABLE|CHARACTER_TABLE]].
   property CONJUGACY_CLASS_REPRESENTATIVES : Array<GeneratorType>;

   # @category Symmetry
   # The conjugacy classes themselves
   property CONJUGACY_CLASSES : Array<Set<GeneratorType>>;

   # @category Symmetry
   # All elements of the group, as expressed in the present action
   # Notice that this is a temporary property; it will not be stored in any file.
   property ALL_GROUP_ELEMENTS : Array<GeneratorType>;

   rule ALL_GROUP_ELEMENTS : GENERATORS {
       $this->ALL_GROUP_ELEMENTS(temporary) = all_group_elements($this);
   }

   # @category Symmetry
   # the name of the property that we act on, for example MAX_INTERIOR_SIMPLICES or INTERIOR_RIDGES
   property DOMAIN_NAME : String;

   # @category Symmetry
   # the name of a different action that this action is induced from
   property INDUCED_FROM : String;

   # @category Symmetry
   # The map giving the index of each group element
   # This is a temporary property; it will not be stored in any file.
   property INDEX_OF : HashMap<DomainType, Int>;

   rule INDEX_OF : DOMAIN_NAME {
       my $dom = $this->DOMAIN_NAME;
       $this->INDEX_OF(temporary) = index_of($this->$dom);
   }

   # @category Symmetry
   # The orbits of the domain, represented via their indices
   property ORBITS : Array<Set<Int>>;

   # @category Symmetry
   # The number of orbits in the domain under the group action
   property N_ORBITS : Int;

   # @category Symmetry
   # The cardinality of each orbit
   property ORBIT_SIZES : Array<Int>;

   # @category Symmetry
   # The images of all domain elements under each group element: [ [ g(x) for x in D ] for g in G ]
   property IMAGES : Array<Array<DomainType>>;
   
   # @category Symmetry
   # A set of generators for input rays, stored as the rows of a matrix.
   # The list of generators may be redundant and non-canonical.
   property INPUT_RAYS_GENERATORS : Matrix<OrbitGeneratorScalarType>;
   
   # @category Symmetry
   # The number of generators for orbits.
   property N_INPUT_RAYS_GENERATORS : Int;

   # @category Symmetry
   # A set of generators for rays, stored as the rows of a matrix.
   # The list of generators may be redundant and non-canonical.
   property RAYS_GENERATORS : Matrix<OrbitGeneratorScalarType>;
   
   # @category Symmetry
   # The number of generators for orbits.
   property N_RAYS_GENERATORS : Int;

   # @category Symmetry
   # A set of generators for inequalities, stored as the rows of a matrix.
   # The list of generators may be redundant and non-canonical.
   property INEQUALITIES_GENERATORS : Matrix<OrbitGeneratorScalarType>;
   
   # @category Symmetry
   # The number of generators for orbits.
   property N_INEQUALITIES_GENERATORS : Int;

   # @category Symmetry
   # A set of generators for facets, stored as the rows of a matrix.
   # The list of generators may be redundant and non-canonical.
   property FACETS_GENERATORS : Matrix<OrbitGeneratorScalarType>;
   
   # @category Symmetry
   # The number of generators for orbits.
   property N_FACETS_GENERATORS : Int;

   # @category Symmetry
   # A set of generators for equations, stored as the rows of a matrix.
   # The list of generators may be redundant and non-canonical.
   property EQUATIONS_GENERATORS : Matrix<OrbitGeneratorScalarType>;
   
   # @category Symmetry
   # The number of generators for orbits.
   property N_EQUATIONS_GENERATORS : Int;

   # @category Symmetry
   # A set of generators for input lineality, stored as the rows of a matrix.
   # The list of generators may be redundant and non-canonical.
   property INPUT_LINEALITY_GENERATORS : Matrix<OrbitGeneratorScalarType>;
   
   # @category Symmetry
   # The number of generators for orbits.
   property N_INPUT_LINEALITY_GENERATORS : Int;

   # @category Symmetry
   # A set of generators for input lineality, stored as the rows of a matrix.
   # The list of generators may be redundant and non-canonical.
   property LINEALITY_SPACE_GENERATORS : Matrix<OrbitGeneratorScalarType>;
   
   # @category Symmetry
   # The number of generators for orbits.
   property N_LINEALITY_SPACE_GENERATORS : Int;

   # @category Symmetry
   # A set of generators for the maximal cones of a fan, stored in terms of indices of vertex generators.
   # The list of generators may be redundant and non-canonical.
   property MAXIMAL_CONES_GENERATORS : IncidenceMatrix;
   
   # @category Symmetry
   # The number of generators for orbits.
   property N_MAXIMAL_CONES_GENERATORS : Int;

   
   # @category Symmetry
   # A collection of representatives for each orbit, represented via their indices
   property ORBIT_REPRESENTATIVES : Array<Int>;

   # @category Symmetry
   # Labels for the orbit representatives
   property ORBIT_REPRESENTATIVE_LABELS : Array<String> : mutable;
   
   # @category Symmetry
   # the representatives of orbits explicitly, not via their indices
   property EXPLICIT_ORBIT_REPRESENTATIVES : Array<DomainType>;

   # @category Symmetry
   # the representatives of orbits explicitly, not via their indices
   property EXPLICIT_ORBIT_REPRESENTATIVE_MATRIX : Matrix<OrbitGeneratorScalarType>;

   # @category Symmetry
   # the number of representatives of orbits
   property N_ORBIT_REPRESENTATIVES : Int;

   # @category Symmetry
   # A permutation that orders the domain elements by orbits
   property PERMUTATION_TO_ORBIT_ORDER : Array<Int>;

}

# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End: