1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
# Copyright (c) 1997-2018
# Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
# http://www.polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
object Polytope {
# @category Optimization
# Linear program applied to the polytope
property LP : LinearProgram<Scalar> : multiple;
# @notest Rule defined "in stock" - currently without use
rule LP.ABSTRACT_OBJECTIVE : VertexPerm.LP.ABSTRACT_OBJECTIVE, VertexPerm.PERMUTATION {
$this->LP->ABSTRACT_OBJECTIVE=permuted($this->VertexPerm->LP->ABSTRACT_OBJECTIVE, $this->VertexPerm->PERMUTATION);
}
rule LP.DIRECTED_GRAPH.ADJACENCY, LP.MAXIMAL_VALUE, LP.MINIMAL_VALUE, LP.MAXIMAL_FACE, LP.MINIMAL_FACE \
: LP.LINEAR_OBJECTIVE, GRAPH.ADJACENCY, VERTICES, FAR_FACE {
$this->LP->DIRECTED_GRAPH->ADJACENCY=dgraph($this, $this->LP);
}
weight 2.50;
precondition : POINTED;
precondition : FEASIBLE;
rule LP.DIRECTED_GRAPH.ADJACENCY, LP.MAXIMAL_VALUE, LP.MINIMAL_VALUE, LP.MAXIMAL_FACE, LP.MINIMAL_FACE \
: LP.ABSTRACT_OBJECTIVE, GRAPH.ADJACENCY, VERTICES {
$this->LP->DIRECTED_GRAPH->ADJACENCY=dgraph($this, $this->LP);
}
weight 2.50;
precondition : POINTED;
precondition : FEASIBLE;
rule LP.MAXIMAL_FACE, LP.MAXIMAL_VALUE : LP.LINEAR_OBJECTIVE, VERTICES, GRAPH.ADJACENCY, FAR_FACE {
pseudo_simplex($this, $this->LP, 1);
}
precondition : POINTED;
precondition : FEASIBLE;
rule LP.MINIMAL_FACE, LP.MINIMAL_VALUE : LP.LINEAR_OBJECTIVE, VERTICES, GRAPH.ADJACENCY, FAR_FACE {
pseudo_simplex($this, $this->LP, 0);
}
precondition : POINTED;
precondition : FEASIBLE;
rule LP.MAXIMAL_VERTEX : VERTICES, FAR_FACE, LP.MAXIMAL_FACE {
my $f=$this->LP->MAXIMAL_FACE-$this->FAR_FACE;
if (@$f) {
$this->LP->MAXIMAL_VERTEX=$this->VERTICES->[$f->[0]];
}
}
weight 0.10;
rule LP.MINIMAL_VERTEX : VERTICES, FAR_FACE, LP.MINIMAL_FACE {
my $f=$this->LP->MINIMAL_FACE-$this->FAR_FACE;
if (@$f) {
$this->LP->MINIMAL_VERTEX=$this->VERTICES->[$f->[0]];
}
}
weight 0.10;
rule ONE_VERTEX : LP.MINIMAL_VERTEX | LP.MAXIMAL_VERTEX {
$this->ONE_VERTEX=$this->LP->give("MINIMAL_VERTEX | MAXIMAL_VERTEX");
}
precondition : POINTED;
weight 0.10;
rule ONE_VERTEX, FEASIBLE : FACETS | INEQUALITIES, CONE_AMBIENT_DIM {
my $lp=$this->add("LP", temporary, LINEAR_OBJECTIVE => new Vector<Scalar>($this->CONE_AMBIENT_DIM));
$this->ONE_VERTEX=$lp->MINIMAL_VERTEX;
$this->FEASIBLE=defined($lp->MINIMAL_VERTEX);
}
weight 3.20;
rule VALID_POINT = ONE_VERTEX;
}
object LinearProgram {
rule RANDOM_EDGE_EPL : DIRECTED_GRAPH.ADJACENCY {
$this->RANDOM_EDGE_EPL=random_edge_epl($this->DIRECTED_GRAPH->ADJACENCY);
}
}
# @category Optimization
# Read a linear programming problem given in LP-Format (as used by cplex & Co.)
# and convert it to a [[Polytope<Scalar>]] object.
#
# **WARNING** The property FEASIBLE is **NOT** computed upon creation.
# This is done to avoid possibly long computation times before the object becomes available to the caller.
# This is **NOT** in keeping with standard practice in polymake, but after, all, these are linear programs
# and not polytopes.
#
# @tparam Scalar coordinate type of the resulting polytope; default is [[Rational]].
# @param String file filename of a linear programming problem in LP-Format
# @param Vector testvec If present, after reading in each line of the LP it is checked whether testvec fulfills it
# @param String prefix If testvec is present, all variables in the LP file are assumed to have the form $prefix$i
# @option Int nocheck Do not automatically compute [[FEASIBLE]] for the polytope (recommended for very large LPs)
# @return Polytope<Scalar>
user_function lp2poly<Scalar=Rational>(String; Vector, String, {nocheck => 0}) {
require LPparser;
my ($filename, $testvec, $prefix, $options) = @_;
my $parser = defined($testvec)
? new LPparser($filename, $testvec, $prefix)
: new LPparser($filename);
my $P=new Polytope<Scalar>($parser->name);
$P->description = "Linear problem converted from file " . $parser->LPfile . "\n";
my $labels = new Array<String>($parser->X);
my $d = $labels->size();
# Specifying the dimension first is required for empty inequalities and coordinate labels
$P->CONE_AMBIENT_DIM = $d;
$P->COORDINATE_LABELS = $labels;
# FIXME #702: change the following kludge to
# $P->INEQUALITIES = new SparseMatrix<Scalar>($parser->Ineq)
my @AoH = $parser->Ineq;
my $Mineq = new SparseMatrix<Scalar>(scalar @AoH, $d);
my $i=0;
foreach my $ineq (@AoH) {
keys %{$ineq};
while (my ($k,$v) = each %{$ineq}) {
$Mineq->[$i]->[$k] = $v;
}
$i++;
}
$P->INEQUALITIES = $Mineq;
# FIXME #702: change the following kludge to
# $P->EQUATIONS = new SparseMatrix<Scalar>($parser->Eq)
@AoH = $parser->Eq;
my $MEq = new SparseMatrix<Scalar>(scalar @AoH, $d);
$i=0;
foreach my $eq (@AoH) {
keys %{$eq};
while (my ($k,$v) = each %{$eq}) {
$MEq->[$i]->[$k] = $v;
}
$i++;
}
$P->EQUATIONS = $MEq;
my $lp=new LinearProgram<Scalar>;
$lp->description="Objective sense was ".($parser->objsense eq "+" ? "MAXIMIZE" : "MINIMIZE")."\n";
# FIXME #702: change the following kludge to
# $P->LINEAR_OBJECTIVE = new SparseVector<Scalar>($parser->Obj)
my $ObjHash = $parser->Obj;
my $ObjVect = new SparseVector<Scalar>($d);
keys %{$ObjHash};
while (my ($k,$v) = each %{$ObjHash}) {
$ObjVect->[$k] = $v;
}
$lp->LINEAR_OBJECTIVE=$ObjVect;
if (@{$parser->Int}) {
$lp->attach("INTEGER_VARIABLES", new Array<Bool>($parser->Int));
}
$P->commit unless($options->{nocheck});
$P->add("LP",$lp);
$P;
}
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|