File: is_balanced.cc

package info (click to toggle)
polymake 3.2r4-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 22,564 kB
  • sloc: cpp: 153,464; perl: 40,590; ansic: 2,829; java: 2,654; python: 589; sh: 219; xml: 117; makefile: 63
file content (117 lines) | stat: -rw-r--r-- 6,585 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#include "polymake/client.h"
#include "polymake/Rational.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/Matrix.h"
#include "polymake/Vector.h"
#include "polymake/Set.h"
#include "polymake/linalg.h"

namespace polymake { namespace tropical {

        /*
         * @brief Checks balancing for a Cycle
         * @param Cycle c The cycle
         * @param bool find_non_balanced_faces Optional. If true, the algorithm will not abort when encountering
         * a non-balanced face. Instead, it will check all faces and return a full set of indices 
         * referring to [[CODIMENSION_ONE_POLYTOPES]], indicating all non-balanced faces. False by default.
         * @return A pair (bool, Set<int>). The first just tells whether the cycle is balanced. The second is
         * either a singleton (if find_non_balanced_faces = false), containing the index of the first non-balanced
         * face - or the full set of indices of non-balanced faces (if find_non_balanced_faces = true).
         */
        std::pair<bool,Set<int> > check_balancing(perl::Object C, bool find_non_balanced_faces=false) {
                //Extract values
                Matrix<Rational> vertices = C.give("VERTICES");
                Matrix<Rational> linealitySpace = C.give("LINEALITY_SPACE");
                IncidenceMatrix<> codimensionOnePolytopes = C.give("CODIMENSION_ONE_POLYTOPES");
                Map<std::pair<int,int>, Vector<Integer> > latticeNormals = C.give("LATTICE_NORMALS");
                Vector<Integer> weights = C.give("WEIGHTS");
                Set<int> farVertices = C.give("FAR_VERTICES");
                int fanAmbientDim = C.give("FAN_AMBIENT_DIM");

                Matrix<Integer> lattice_normal_sums(codimensionOnePolytopes.rows(), fanAmbientDim);
                Set<int> non_balanced;
                //Iterate through all lattice normals and compute weighted sums
                for(Entire<Map<std::pair<int,int>, Vector<Integer> > >::iterator lnormal = entire(latticeNormals);
                                !lnormal.at_end(); lnormal++) {
                        lattice_normal_sums.row( (*lnormal).first.first) += 
                                weights[ (*lnormal).first.second] * ((*lnormal).second);
                }//END iterate lattice normals

                //For each codimension one face check if the lattice normal sum is in the span
                // modulo the all-ones-vector
                Vector<Rational> proj_vector = fanAmbientDim > 0?
                                ones_vector<Rational>(fanAmbientDim) - unit_vector<Rational>(fanAmbientDim,0) :
                                Vector<Rational>();
                for(int codim = 0; codim < codimensionOnePolytopes.rows(); codim++) {
                        Matrix<Rational> span_matrix = linealitySpace;
                        //To create the span, add all far vertices and take differences of vertices with a basepoint.
                        span_matrix /= vertices.minor( codimensionOnePolytopes.row(codim) * farVertices,All);
                        Set<int> codimOneRays = codimensionOnePolytopes.row(codim) - farVertices;
                        int basepoint = *(codimOneRays.begin());
                        codimOneRays -= basepoint;
                        for(Entire<Set<int> >::iterator nf = entire(codimOneRays); !nf.at_end(); nf++) {
                                span_matrix /= (vertices.row(*nf) - vertices.row(basepoint));
                        }
                        span_matrix /= proj_vector;
                        span_matrix /= (Vector<Rational>(lattice_normal_sums.row(codim)));
                
                        //The lattice normal is the last column of the matrix for which we compute the kernel.
                        //If it's in the span of the other columns, there must be a kernel element with
                        //nontrivial last entry.
                        Matrix<Rational> kernel = null_space(T(span_matrix));
                        if (kernel.cols() == 0 || is_zero(kernel.col(kernel.cols()-1))) {
                                non_balanced += codim;  
                                if (!find_non_balanced_faces) return std::pair<bool, Set<int> >(false, non_balanced);
                        }


                }//END iterate codim one polytopes

                return std::pair<bool, Set<int> >( non_balanced.size() == 0, non_balanced);

        }//END check_balancing

        bool is_balanced(perl::Object C) {
                return check_balancing(C,false).first;
        }

        /*
         * @brief Wrapper for check_balancing that returns the set of indices of unbalanced
         * codimensionOnePolytopes.
         */
        Set<int> unbalanced_faces(perl::Object C) {
                return check_balancing(C,true).second;
        }

        UserFunction4perl("# @category Weights and lattices"
                          "# This computes whether a given cycle is balanced."
                          "# Note that, while cycles are per definition balanced polyhedral complexes,"
                          "# polymake allows the creation of Cycle objects which are not balanced."
                          "# @param Cycle C The cycle for which to check balancing."
                          "# @return Bool Whether the cycle is balanced."
                          "# @example"
                          "# > $x = new Cycle<Max>(PROJECTIVE_VERTICES=>[[1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,-1]],MAXIMAL_POLYTOPES=>[[0,1],[0,2],[0,3]],WEIGHTS=>[1,1,1]);"
                          "# > print is_balanced($x);"
                          "# | 1",
                          &is_balanced,"is_balanced(Cycle)");

        Function4perl(&unbalanced_faces,"unbalanced_faces(Cycle)");
        Function4perl(&check_balancing, "check_balancing(Cycle;$=0)");

}}