1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
object PolyhedralFan {
# to be overloaded in special cases like Scalar==Float
sub prepare_computations { undef }
# @category Geometry
# Dimension of the space which contains the polyhedral fan.
# Note: To avoid confusion in context of (in-)homogenuous coordinates it is generally advised to use the method [[AMBIENT_DIM]].
# @example The fan living in the plane containing only the cone which consists of the ray pointing in positive x-direction is
# by definition embedded in the plane:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0]],INPUT_CONES=>[[0]]);
# > print $f->FAN_AMBIENT_DIM;
# | 2
property FAN_AMBIENT_DIM : Int;
# @category Geometry
# Dimension of the polyhedral fan.
# # Note: To avoid confusion in context of (in-)homogenuous coordinates it is generally advised to use the method [[DIM]].
# @example The fan living in the plane containing only the cone which consists of the ray pointing in positive x-direction is
# 1-dimensional:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0]],INPUT_CONES=>[[0]]);
# > print $f->FAN_DIM;
# | 1
property FAN_DIM : Int;
# @category Combinatorics
# Combinatorial dimension of the fan.
# @example The [[normal_fan|normal fan]] of the 6-cube has combinatorial dimension 5:
# > print normal_fan(cube(6))->COMBINATORIAL_DIM;
# | 5
property COMBINATORIAL_DIM : Int;
# @category Geometry
# A fan is __full-dimensional__ if its [[FAN_DIM|dimension]] and [[FAN_AMBIENT_DIM|ambient dimension]] coincide.
# @example The [[normal_fan|normal fan]] of a polytope is always full-dimensional, which we see here for the 5-dimensional [[cross|cross polytope]]:
# > $nf = normal_fan(cross(5));
# > print $nf->FULL_DIM;
# | true
property FULL_DIM : Bool;
# @category Geometry
# A fan is __pointed__ if the [[LINEALITY_SPACE|lineality space]] is trivial.
# @example The [[normal_fan|normal fan]] of a polytope is pointed if and only if the polytope is full-dimensional. Here we confirm this for
# the normal fans of the 2-cube living in 2- and in 3-space, respectively:
# > $nf_full = normal_fan(cube(2));
# > print $nf_full->POINTED;
# | true
# > $nf_not_full = normal_fan(product(cube(2),new Polytope(POINTS=>[[1,0]])));
# > print $nf_not_full->POINTED;
# | false
property POINTED : Bool;
# @category Geometry
# Since we do not require our cones to be [[POINTED|pointed]]: a basis of the lineality space of the fan. Co-exists with [[RAYS]].
# @example We can create a fan in 3-space from the two 2-dimensional cones which are the (x,y)- and (x,z)-halfspaces where
# y and z are non-negative, respectively. Both cones and thus the fan contain lineality in x-direction:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0,0],[0,1,0],[0,0,1],[-1,0,0]],INPUT_CONES=>[[0,1,3],[0,2,3]]);
# > print $f->LINEALITY_SPACE;
# | 1 0 0
property LINEALITY_SPACE : Matrix<Scalar>;
# @category Geometry
# A basis of the orthogonal complement to [[LINEALITY_SPACE]].
# @example In 3-space, we build a fan containing only the ray pointing in positive x-direction, together with lineality in y-direction.
# The definition of the cones yields no additional lineality, thus the orthogonal complement to the lineality space is spanned
# by (1,0,0) and (0,0,1):
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0,0]],INPUT_CONES=>[[0]],INPUT_LINEALITY=>[[0,1,0]]);
# > print $f->ORTH_LINEALITY_SPACE;
# | 1 0 0
# | 0 0 1
property ORTH_LINEALITY_SPACE : Matrix<Scalar>;
# @category Geometry
# Dimension of the [[LINEALITY_SPACE|lineality space]].
# @example A [[POINTED|pointed]] fan has no lineality, thus the dimension of its lineality space is 0. The most simple example is a fan
# only consisting of one ray, here in the plane:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0]],INPUT_CONES=>[[0]]);
# > print $f->LINEALITY_DIM;
# | 0
property LINEALITY_DIM : Int;
# @category Input property
# Rays from which the cones are formed. May be redundant. All vectors in the input must be non-zero.
# You also need to provide [[INPUT_CONES]] to define a fan completely.
# Input section only. Ask for [[RAYS]] if you want a list of non-redundant rays.
# @example When constructing the fan which displays the division of the plane into quadrants, we can use
# redundant rays such that the indices given in [[INPUT_CONES]] suggest that two rays form the border of our fan, but due
# to our choice in [[INPUT_RAYS]], they actually are the same ray adjacent to two distinct 2-dimensional cones:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0],[0,1],[-1,0],[0,-1],[2,0]],INPUT_CONES=>[[0,1],[1,2],[2,3],[3,4]]);
# > print rows_labeled($f->RAYS);
# | 0:1 0
# | 1:0 1
# | 2:-1 0
# | 3:0 -1
# > print $f->CONES;
# | <{0}
# | {1}
# | {2}
# | {3}
# | >
# | <{0 1}
# | {1 2}
# | {2 3}
# | {0 3}
# | >
property INPUT_RAYS : Matrix<Scalar>;
# @category Input property
# Maybe redundant list of not necessarily maximal cones. Indices refer to [[INPUT_RAYS]].
# Each cone must list all rays of [[INPUT_RAYS]] it contains.
# Any incident cones will automatically be added.
# The cones are allowed to contain lineality.
# Cones which do not have any rays correspond to the trivial cone (contains only the origin).
# An empty fan does not have any cones.
# Input section only. Ask for [[MAXIMAL_CONES]] if you want to know the maximal cones (indexed by [[RAYS]]).
# @example In 3-space, we construct the fan containing the closure of the all-positive octant and the
# (x<=0, y>=0, z=0) quadrant with the following input (note that we do not have to state the combinatorics for
# cones contained in a given cone of higher dimension, e.g. the the (x>=0, z>=0) quadrant in the y=0 plane):
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0,0],[0,1,0],[0,0,1],[-1,0,0]],INPUT_CONES=>[[0,1,2],[1,3]]);
# > print rows_labeled($f->RAYS);
# | 0:1 0 0
# | 1:0 1 0
# | 2:0 0 1
# | 3:-1 0 0
# > print $f->CONES;
# | <{1}
# | {3}
# | {2}
# | {0}
# | >
# | <{1 3}
# | {1 2}
# | {0 2}
# | {0 1}
# | >
# | <{0 1 2}
# | >
property INPUT_CONES : IncidenceMatrix;
# @category Input property
# Vectors whose linear span defines a subset of the lineality space of the fan;
# redundancies are allowed.
#
# Input section only. Ask for [[LINEALITY_SPACE]] if you want to know the lineality space.
# @example In 3-space, we can "stretch" the (x>=0, y>=0) quadrant in the z=0 hyperplane to obtain the joint of the
# two octants where x and y are non-negative by adding linearity in z-direction:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0,0],[0,1,0]],INPUT_CONES=>[[0,1]],INPUT_LINEALITY=>[[0,0,1]]);
property INPUT_LINEALITY : Matrix<Scalar>;
# @category Geometry
# Rays of the [[PolyhedralFan]]. Non-redundant. Co-exists with [[LINEALITY_SPACE]].
# @example The rays of the [[face_fan|face fan]] of a 3-dimensioanl cube. This fan has one ray in the direcction of each vertex of the cube.
# > print face_fan(cube(3))->RAYS;
# | -1 -1 -1
# | 1 -1 -1
# | -1 1 -1
# | 1 1 -1
# | -1 -1 1
# | 1 -1 1
# | -1 1 1
# | 1 1 1
property RAYS : Matrix<Scalar> {
sub canonical { &canonicalize_rays; }
}
# permuting the [[RAYS]]
permutation RaysPerm : PermBase;
rule RaysPerm.PERMUTATION : RaysPerm.RAYS, RAYS, LINEALITY_SPACE {
my $cmp = $this->prepare_computations;
$this->RaysPerm->PERMUTATION = find_representation_permutation($this->RaysPerm->RAYS, $this->RAYS, $this->LINEALITY_SPACE, 0)
// die "no permutation";
}
rule RAYS : RaysPerm.RAYS, RaysPerm.PERMUTATION {
$this->RAYS=permuted_rows($this->RaysPerm->RAYS, $this->RaysPerm->PERMUTATION);
}
weight 1.10;
# @category Geometry
# Number of [[RAYS]].
# @example The number of facets of a polytope is the number of rays of the corresponding [[normal_fan|normal fan]]. Here we see this for the 3-cube:
# > print normal_fan(cube(3))->N_RAYS;
# | 6
property N_RAYS : Int;
# @category Geometry
# Number of [[INPUT_RAYS]].
# @example To determine the combined amount of redundant and unused rays given by [[INPUT_RAYS]], we compare this number
# to [[N_RAYS]]:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0],[0,1],[-1,0],[0,-1],[2,0],[1,1]],INPUT_CONES=>[[0,1],[1,2],[2,3],[3,4]]);
# > print ($f->N_INPUT_RAYS-$f->N_RAYS);
# | 2
property N_INPUT_RAYS : Int;
# @category Combinatorics
# Non redundant list of maximal cones. Indices refer to [[RAYS]].
# Cones which do not have any rays correspond to the trivial cone (contains only the origin).
# An empty fan does not have any cones.
# @example The maximal cones of the normal fan of the 3-cube describe which faces share a common vertex:
# > print normal_fan(cube(3))->MAXIMAL_CONES;
# | {0 2 4}
# | {1 2 4}
# | {0 3 4}
# | {1 3 4}
# | {0 2 5}
# | {1 2 5}
# | {0 3 5}
# | {1 3 5}
property MAXIMAL_CONES : IncidenceMatrix;
rule MAXIMAL_CONES : RaysPerm.MAXIMAL_CONES, RaysPerm.PERMUTATION {
$this->MAXIMAL_CONES = permuted_cols($this->RaysPerm->MAXIMAL_CONES, $this->RaysPerm->PERMUTATION);
}
# permuting the [[MAXIMAL_CONES]]
permutation ConesPerm : PermBase;
rule ConesPerm.PERMUTATION : ConesPerm.MAXIMAL_CONES, MAXIMAL_CONES {
$this->ConesPerm->PERMUTATION = find_permutation(new Array<Set<Int>>(rows($this->ConesPerm->MAXIMAL_CONES)), new Array<Set<Int>>(rows($this->MAXIMAL_CONES)))
// die "no permutation";
}
weight 1.10;
rule MAXIMAL_CONES : ConesPerm.MAXIMAL_CONES, ConesPerm.PERMUTATION {
$this->MAXIMAL_CONES = permuted_rows($this->ConesPerm->MAXIMAL_CONES, $this->ConesPerm->PERMUTATION);
}
weight 1.10;
# @category Combinatorics
# Transposed to [[MAXIMAL_CONES]].
# Notice that this is a temporary property; it will not be stored in any file.
property MAXIMAL_CONES_THRU_RAYS : IncidenceMatrix;
rule MAXIMAL_CONES_THRU_RAYS : MAXIMAL_CONES {
$this->MAXIMAL_CONES_THRU_RAYS(temporary)=transpose($this->MAXIMAL_CONES);
}
# @category Combinatorics
# List of all cones of the fan of each dimension. Indices refer to [[RAYS]].
# @example A fan constructed with a 2-dimensional cone in [[INPUT_CONES]] also contains the incident 1-dimensional
# cones.
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0],[0,1]],INPUT_CONES=>[[0,1]]);
# > print $f->CONES;
# | <{0}
# | {1}
# | >
# | <{0 1}
# | >
property CONES : Array<IncidenceMatrix>;
# @category Combinatorics
# Number of [[MAXIMAL_CONES]].
# @example The number of facets of a polytope is the same as the number of maximal cones of its face fan;
# here we can see this for the 3-cube:
# > print face_fan(cube(3))->N_MAXIMAL_CONES;
# | 6
property N_MAXIMAL_CONES : Int;
# @category Combinatorics
# Number of [[CONES]].
property N_CONES : Int;
# @category Combinatorics
# Array of incidence matrices of all [[MAXIMAL_CONES|maximal cones]]. Indices refer to [[RAYS]].
# @example Here we construct a fan with a 3-dimensional and a 2-dimensional maximal cone and then display the incident cones:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0,0],[0,1,0],[0,0,1],[-1,0,0]],INPUT_CONES=>[[0,1,2],[1,3]]);
# > print $f->MAXIMAL_CONES;
# | {0 1 2}
# | {1 3}
# > print $f->MAXIMAL_CONES_INCIDENCES;
# | <{1 2}
# | {0 2}
# | {0 1}
# | >
# | <{1}
# | {3}
# | >
property MAXIMAL_CONES_INCIDENCES : Array<IncidenceMatrix>;
rule MAXIMAL_CONES_INCIDENCES : ConesPerm.MAXIMAL_CONES_INCIDENCES, ConesPerm.PERMUTATION {
$this->MAXIMAL_CONES_INCIDENCES=permuted($this->ConesPerm->MAXIMAL_CONES_INCIDENCES, $this->ConesPerm->PERMUTATION);
}
weight 1.10;
rule MAXIMAL_CONES_INCIDENCES : RaysPerm.MAXIMAL_CONES_INCIDENCES, RaysPerm.PERMUTATION {
my $n_mc=scalar(@{$this->RaysPerm->MAXIMAL_CONES_INCIDENCES});
my $mci=new Array<IncidenceMatrix>($n_mc);
foreach my $i (0..$n_mc-1) {
$mci->[$i]=permuted_cols($this->RaysPerm->MAXIMAL_CONES_INCIDENCES->[$i], $this->RaysPerm->PERMUTATION);
}
$this->MAXIMAL_CONES_INCIDENCES=$mci;
}
weight 1.10;
# @category Combinatorics
# The combinatorial dimensions of the [[MAXIMAL_CONES|maximal cones]].
# @example Here we construct a fan with a 3-dimensional and a 2-dimensional maximal cone, of which the latter contains lineality,
# and then display the corresponding combinatorial dimensions:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0,0],[0,1,0],[0,0,1],[-1,0,0],[0,-1,0]],INPUT_CONES=>[[0,1,2],[1,3,4]]);
# > print $f->MAXIMAL_CONES;
# | {0 1 2}
# | {3}
# > print $f->MAXIMAL_CONES_COMBINATORIAL_DIMS;
# | 2 0
property MAXIMAL_CONES_COMBINATORIAL_DIMS : Array<Int>;
rule MAXIMAL_CONES_COMBINATORIAL_DIMS : ConesPerm.MAXIMAL_CONES_COMBINATORIAL_DIMS, ConesPerm.PERMUTATION {
$this->MAXIMAL_CONES_COMBINATORIAL_DIMS=permuted($this->ConesPerm->MAXIMAL_CONES_COMBINATORIAL_DIMS, $this->ConesPerm->PERMUTATION);
}
weight 1.10;
# @category Combinatorics
# The combinatorial dimensions of the [[CONES|cones]].
property CONES_COMBINATORIAL_DIMS : Array<Int>;
rule CONES_COMBINATORIAL_DIMS : ConesPerm.CONES_COMBINATORIAL_DIMS, ConesPerm.PERMUTATION {
$this->CONES_COMBINATORIAL_DIMS=permuted($this->ConesPerm->CONES_COMBINATORIAL_DIMS, $this->ConesPerm->PERMUTATION);
}
weight 1.10;
# @category Combinatorics
# The dimensions of the [[CONES|cones]].
# @return Array<Int>
user_method CONES_DIMS : FAN_DIM, CONES_COMBINATORIAL_DIMS {
my $this=shift;
my @mcd;
my $cd=$this->COMBINATORIAL_DIM;
my $d=0;
if ( defined ($this->lookup( "RAYS | INPUT_RAYS | INPUT_LINEALITY | LINEALITY_SPACE | LINEALITY_DIM | FAN_DIM | FACET_NORMALS | ORTH_LINEALITY_SPACE" ) ) ) {
$d=$this->FAN_DIM-$cd;
}
foreach (@{$this->CONES_COMBINATORIAL_DIMS}) {
push @mcd, $_+$d;
}
return new Array<Int>(@mcd);
}
# @category Visualization
# Unique names assigned to the [[RAYS]].
# If specified, they are shown by visualization tools instead of vertex indices.
#
# For a polyhedral fan built from scratch, you should create this property by yourself,
# either manually in a text editor, or with a client program.
# @example The [[normal_fan|normal fan]] of the 2-cube has 4 rays; to assign the labels 'a', 'b' and 'any label' to the first
# three entries of [[RAYS]], do this (note that the unspecified label of the last ray is blank when visualizing, and that,
# depending on your visualization settings, not the whole string of the third label might be displayed):
# > $f = normal_fan(cube(2));
# > $f->RAY_LABELS=['a','b','any label'];
property RAY_LABELS : Array<String> : mutable;
rule RAY_LABELS : RaysPerm.RAY_LABELS, RaysPerm.PERMUTATION {
$this->RAY_LABELS=permuted($this->RaysPerm->RAY_LABELS, $this->RaysPerm->PERMUTATION);
}
weight 1.10;
# @category Visualization
# Unique names assigned to the [[INPUT_RAYS]]. Similar to [[RAY_LABELS]] for [[RAYS]].
property INPUT_RAY_LABELS : Array<String> : mutable;
# @category Visualization
# Unique names assigned to the [[MAXIMAL_CONES]]. Similar to [[RAY_LABELS]] for [[RAYS]].
property MAXIMAL_CONE_LABELS : Array<String> : mutable;
# @category Combinatorics
# The poset of subcones of the polyhedral fan organized as a directed graph.
# Each node corresponds to some proper subcone of the fan.
# The nodes corresponding to the maximal cones appear in the same order
# as the elements of [[MAXIMAL_CONES]].
#
# One special node represents the origin and one special node represents the full fan
# (even if the fan only has one maximal cone).
# @example To compute the Hasse diagram of the [[normal_fan|normal fan]] of the 2-cube and display its
# decoration, we can do the following. Note the artificial node on top and the empty node at the bottom. The latter represents the trivial cone consisting only of the origin.
# > $h = normal_fan(cube(2))->HASSE_DIAGRAM;
# print $h->DECORATION;
# | ({-1} 3)
# | ({0 2} 2)
# | ({1 2} 2)
# | ({0 3} 2)
# | ({1 3} 2)
# | ({0} 1)
# | ({2} 1)
# | ({1} 1)
# | ({3} 1)
# | ({} 0)
property HASSE_DIAGRAM : Lattice<BasicDecoration> {
method get_shift() {
my $this = shift;
return $this->parent->isa("fan::PolyhedralComplex") ? 1 : 0;
}
# @category Combinatorics
# @return Int
user_method dim {
my $this = shift;
return $this->rank() - $this->get_shift();
}
# @category Combinatorics
# @param Int d dimension
# @return Set<Int>
user_method nodes_of_dim($) {
my ($this,$d) = @_;
return $this->nodes_of_rank($d + $this->get_shift());
}
# @category Combinatorics
# @param Int d1 lower dimension
# @param Int d1 upper dimension
# @return Set<Int>
user_method nodes_of_dim_range($,$) {
my ($this,$d1,$d2) = @_;
my $st = $this->get_shift();
return shift->nodes_of_rank_range($d1+$st,$d2+$st);
}
method cones_of_dim($) {
my ($this, $k) = @_;
my $n = $this->nodes_of_rank(1)->size();
my @rows = map { $this->DECORATION->[$_]->face } @{$this->nodes_of_rank($k)};
return @rows ? new IncidenceMatrix(\@rows, $n) : new IncidenceMatrix(0, $n);
}
}
# @category Combinatorics
# f<sub>ik</sub> is the number of incident pairs of i-dimensional cones and k-dimensional cones; the main diagonal contains the [[F_VECTOR]].
property F2_VECTOR : Matrix<Integer>;
# @category Combinatorics
# f<sub>k</sub> is the number of k-dimensional cones starting from dimension k=1.
# The f-vector of a polytope and the f-vector of any of its [[face_fan|face fans]] coincide; for the 3-cube:
# > print face_fan(cube(3))->F_VECTOR;
# | 8 12 6
property F_VECTOR : Vector<Integer>;
# @category Combinatorics
# The polyhedral fan is __pure__ if all [[MAXIMAL_CONES|maximal cones]] are of the same dimension.
# @example Generating a fan from two distinct 2-dimensional cones gives a pure fan:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0],[0,1],[-1,0],[0,-1]],INPUT_CONES=>[[0,1],[2,3]]);
# > print $f->PURE;
# | true
# @example Gnerating a fan from a 2-dimensional and a 1-dimensional cone results in the fan not being pure if the latter is a ray
# not contained in the former:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,1],[-1,1],[0,-1]],INPUT_CONES=>[[0,1],[2]]);
# > print $f->PURE;
# | false
property PURE : Bool;
# @category Combinatorics
# The polyhedral fan is __complete__ if its suport is the whole space.
#
# Due to undecidability issues this is checked heuristically only.
# See the remarks on [[topaz::SimplicialComplex::SPHERE|SPHERE]] for details.
# Note that in the case of a polyhedral complex, this refers to the underlying fan, so should always be false.
# @example The [[normal_fan|normal fan]] of a polytope always is complete; here we see this for the 8-cube:
# > print normal_fan(cube(8))->COMPLETE;
# | true
property COMPLETE : Bool;
# @category Combinatorics
# The polyhedral fan is __simplicial__ if all [[MAXIMAL_CONES|maximal cones]] are [[Cone::SIMPLICIAL|simplicial]].
# @example The [[normal_fan|normal fan]] of a d-cube is __simplicial__; here we see this for the 3-cube:
# > print normal_fan(cube(3))->SIMPLICIAL;
# | true
property SIMPLICIAL : Bool;
# @category Geometry
# True if the fan is the [[normal_fan|normal fan]] of a [[Polytope::BOUNDED|bounded]] polytope.
# @example The [[face_fan|face fan]] of the centered d-dimensional cross polytope w.r.t. the origin
# is the [[normal_fan|normal fan]] of the d-cube; here we confirm the regularity of the face fan for d=7:
# > print face_fan(cross(7))->REGULAR;
# | true
# @example A [[normal_fan|normal fan]] always is complete; thus a fan which is not complete can not be regular:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0],[0,1]],INPUT_CONES=>[[0,1]]);
# > print $f->REGULAR;
# | false
property REGULAR : Bool;
# @category Geometry
# True if the fan is a subfan of a [[REGULAR]] fan
# @example Here we build a fan in the plane with the non-negative quadrant and the ray pointing in negative y-direction
# as its [[MAXIMAL_CONES|maximal cones]]. This is a subfan of the fan with all four quadrants as its maximal cones which is the
# [[normal_fan|normal fan]] of the 2-cube; thus, our fan is pseudo regular:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0],[0,1],[-1,0]],INPUT_CONES=>[[0,1],[2]]);
# > print $f->PSEUDO_REGULAR;
# | true
property PSEUDO_REGULAR : Bool;
# @category Combinatorics
# The graph of the fan intersected with a sphere, that is,
# the vertices are the rays which are connected if they are
# contained in a common two-dimensional cone.
# @example The graph of a [[face_fan|face fan]] of a polytope is isomorphic to the vertex-edge graph of the polytope.
# Here we see this for the 3-cube:
# > $c = cube(3);
# > $f = face_fan($c);
# > $g1 = $f->GRAPH;
# > $g2 = $c->GRAPH;
# > print isomorphic($g1->ADJACENCY,$g2->ADJACENCY);
# | true
property GRAPH : Graph;
rule GRAPH.NodePerm.PERMUTATION = RaysPerm.PERMUTATION;
# @category Combinatorics
# The graph whose nodes are the maximal cones which
# are connected if they share a common facet.
# Only defined if [[PURE]].
# @example The dual graph of a [[face_fan|face fan]] of the 3-cube is isomorphic to the vertex-edge graph of the
# 3-dimensional cross polytope.
# > $c = cross(3);
# > $f = face_fan(cube(3));
# > $g1 = $f->DUAL_GRAPH;
# > $g2 = $c->GRAPH;
# > print isomorphic($g1->ADJACENCY,$g2->ADJACENCY);
# | true
property DUAL_GRAPH : Graph;
rule DUAL_GRAPH.NodePerm.PERMUTATION = ConesPerm.PERMUTATION;
# @category Geometry
# The possible facet normals of all maximal cones.
# @example The two facet normals of the complete fan dividing the plane into the four quadrants (which can be obtained by
# computing the [[normal_fan|normal fan]] of the 2-cube) point in x- and in y-direction, respectively:
# > print normal_fan(cube(2))->FACET_NORMALS;
# | 1 0
# | 0 1
property FACET_NORMALS : Matrix<Scalar>;
# @category Geometry
# The number of possible facet normals of all maximal cones.
# @example The facets of the [[normal_fan|normal fan]] of the 3-cube are each spanned by a ray pointing in positive or negative
# direction of one axis and another ray pointing in positive or negative direction of another axis; thus, the third axis
# is normal to this facet. This leaves us with three possible facet normals:
# > print normal_fan(cube(3))->N_FACET_NORMALS;
# | 3
property N_FACET_NORMALS : Int;
# @category Geometry
# Tells for each maximal cone what are its facet normals, thus implying the facets.
# Each row corresponds to a maximal cone and each column to the row with the same index of [[FACET_NORMALS]].
# A negative number means that the corresponding row of
# [[FACET_NORMALS]] has to be negated.
# @example The two facet normals of the complete fan dividing the plane into the four quadrants (which can be obtained by
# computing the [[normal_fan|normal fan]] of the 2-cube) point in x- and in y-direction, respectively. Each quadrant has both of these
# as normals only differing by the combination of how they point in- or outside:
# > $f = normal_fan(cube(2));
# > print $f->MAXIMAL_CONES;
# | {0 2}
# | {1 2}
# | {0 3}
# | {1 3}
# > print rows_numbered($f->FACET_NORMALS);
# | 0:1 0
# | 1:0 1
# > print $f->MAXIMAL_CONES_FACETS;
# | 1 1
# | -1 1
# | 1 -1
# | -1 -1
property MAXIMAL_CONES_FACETS : SparseMatrix<Int>;
rule MAXIMAL_CONES_FACETS : ConesPerm.MAXIMAL_CONES_FACETS, ConesPerm.PERMUTATION {
$this->MAXIMAL_CONES_FACETS=permuted_rows($this->ConesPerm->MAXIMAL_CONES_FACETS, $this->ConesPerm->PERMUTATION);
}
weight 1.10;
# @category Geometry
# The possible linear span normals of all maximal cones.
# Empty if [[PURE]] and [[FULL_DIM]], i.e. each maximal cone has the same dimension as the ambient space.
# @example We construct a fan in 3-space with two 2-dimensional maximal cones and a 1-dimensional maximal cone. Note that
# there are two possible normals for the latter, but one of these also is a normal for one of the 2-dimensional cones; thus
# we receive three normals:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0,0],[0,1,0],[-1,0,1],[-1,-1,0]],INPUT_CONES=>[[0,1],[1,2],[3]]);
# > print $f->LINEAR_SPAN_NORMALS;
# | 0 0 1
# | 1 0 1
# | -1 1 0
property LINEAR_SPAN_NORMALS : Matrix<Scalar>;
# @category Geometry
# Tells for each maximal cone what is its linear span by naming its normals.
# Indices refer to [[LINEAR_SPAN_NORMALS]].
# Rows correspond to [[MAXIMAL_CONES]].
# An empty row corresponds to a full-dimensional cone.
# @example We construct a fan in 3-space with two 2-dimensional maximal cones and a 1-dimensional maximal cone. This way
# we receive two cones with one normal and one cone with two normals:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0,0],[0,1,0],[-1,0,1],[-1,-1,0]],INPUT_CONES=>[[0,1],[1,2],[3]]);
# > print $f->MAXIMAL_CONES;
# | {0 1}
# | {1 2}
# | {3}
# > print rows_numbered($f->LINEAR_SPAN_NORMALS);
# | 0:0 0 1
# | 1:1 0 1
# | 2:-1 1 0
# > print $f->MAXIMAL_CONES_LINEAR_SPAN_NORMALS;
# | {0}
# | {1}
# | {0 2}
property MAXIMAL_CONES_LINEAR_SPAN_NORMALS : IncidenceMatrix;
rule MAXIMAL_CONES_LINEAR_SPAN_NORMALS : LINEAR_SPAN_NORMALS, ConesPerm.MAXIMAL_CONES_LINEAR_SPAN_NORMALS, ConesPerm.PERMUTATION {
if ($this->LINEAR_SPAN_NORMALS->rows) {
$this->MAXIMAL_CONES_LINEAR_SPAN_NORMALS = permuted_rows($this->ConesPerm->MAXIMAL_CONES_LINEAR_SPAN_NORMALS, $this->ConesPerm->PERMUTATION);
} else {
# the linear span matrix is empty, nothing to permute
$this->MAXIMAL_CONES_LINEAR_SPAN_NORMALS = $this->ConesPerm->MAXIMAL_CONES_LINEAR_SPAN_NORMALS;
}
}
weight 1.10;
# @category Topology
# If the fan is [[SIMPLICIAL]] the simplicial complex obtained by intersecting
# the fan with the unit sphere.
# If the fan is not [[SIMPLICIAL]] the crosscut complex of the intersection.
# @example When intersecting, the [[normal_fan|normal fan]] of the 3-cube gives us a simplicial complex which is a topological 2-sphere:
# > $ic = normal_fan(cube(3))->INTERSECTION_COMPLEX;
# print $ic->SPHERE;
# | true
property INTERSECTION_COMPLEX : topaz::SimplicialComplex;
# @category Topology
# The homology of the intersection of the fan with the unit sphere.
# # @example When intersecting, the [[normal_fan|normal fan]] of the 3-cube gives us a simplicial complex which is a topological 2-sphere:
# > print normal_fan(cube(3))->HOMOLOGY;
# | ({} 0)
# | ({} 0)
# | ({} 1)
property HOMOLOGY : Array<topaz::HomologyGroup<Integer>>;
rule HOMOLOGY = INTERSECTION_COMPLEX.HOMOLOGY;
# @category Combinatorics
# Returns the //i//-th [[MAXIMAL_CONES|maximal cone]].
# @param Int i
# @return Cone
# @example To obtain the cone generated by the x-, y- and z-axis, we can take the first cone of the [[normal_fan|normal fan]] of
# the 3-cube:
# > $c = normal_fan(cube(3))->cone(0);
# > print $c->RAYS;
# | 1 0 0
# | 0 1 0
# | 0 0 1
user_method cone($) : MAXIMAL_CONES {
my ($self,$i)=@_;
my $c=new Cone<Scalar>;
my $a_dim=$c->CONE_AMBIENT_DIM=$self->FAN_AMBIENT_DIM;
if (defined(my $ls=$self->lookup("LINEALITY_SPACE"))) {
$c->LINEALITY_SPACE=$ls;
}
if (defined(my $ld=$self->lookup("LINEALITY_DIM"))) {
$c->LINEALITY_DIM=$ld;
}
if (defined(my $r=$self->lookup("RAYS")) and defined(my $mc=$self->lookup("MAXIMAL_CONES"))) {
$c->RAYS=$r->minor($mc->[$i],All);
}
if (defined(my $mcf=$self->lookup("MAXIMAL_CONES_FACETS")) and defined(my $fn=$self->lookup("FACET_NORMALS"))) {
my @facets;
my $a=0;
foreach (@{$mcf->row($i)}) {
if($_!=0) {push(@facets,$_*$fn->row($a)); }
++$a;
}
$c->FACETS=\@facets;
}
if (defined(my $mclsn=$self->lookup("MAXIMAL_CONES_LINEAR_SPAN_NORMALS")) and defined(my $lsn=$self->lookup("LINEAR_SPAN_NORMALS"))) {
if ($mclsn->rows==0) {
$c->LINEAR_SPAN=new Matrix<Scalar>(0,$a_dim);
}
else {
$c->LINEAR_SPAN=$lsn->minor($mclsn->[$i],All);
}
}
if (defined(my $mci=$self->lookup("MAXIMAL_CONES_INCIDENCES"))) {
$c->RAYS_IN_FACETS=$mci->[$i];
}
if (defined(my $mccd=$self->lookup("MAXIMAL_CONES_COMBINATORIAL_DIMS"))) {
$c->COMBINATORIAL_DIM=$mccd->[$i];
}
if (defined(my $simp=$self->lookup("SIMPLICIAL"))) {
if ($simp) {
$c->SIMPLICIAL=$simp;
}
if (defined(my $pure=$self->lookup("PURE"))) {
if ($pure) {
if (defined(my $fd=$self->lookup("FAN_DIM"))) {
$c->CONE_DIM=$fd;
}
if (defined(my $cd=$self->lookup("COMBINATORIAL_DIM"))) {
$c->COMBINATORIAL_DIM=$cd;
}
}
}
}
return $c;
}
# @category Combinatorics
# Returns an incidence matrix containing the cones of dimension //k//
# @param Int k
# @return IncidenceMatrix
# @example To obtain the 2-dimensional cones in the normal fan of the 3-cube, type
# > $c = normal_fan(cube(3));
# > print $c->cones_of_dim(2);
# | {2 4}
# | {0 4}
# | {0 2}
# | {1 4}
# | {1 2}
# | {3 4}
# | {0 3}
# | {1 3}
# | {2 5}
# | {0 5}
# | {1 5}
# | {3 5}
user_method cones_of_dim($) : HASSE_DIAGRAM {
my ($self, $k) = @_;
if ($k < 1) {
croak("Need k>0");
}
my $d = $self->HASSE_DIAGRAM->rank;
if ($k >= $d) {
croak("Asking for cones of dimension $k is futile for a cone of combinatorial dimension $d");
}
return $self->HASSE_DIAGRAM->cones_of_dim($k);
}
# @category Geometry
# Returns the dimension of the ambient space.
# @return Int
# @example The fan living in the plane containing only the cone which consists of the ray pointing in positive x-direction is
# by definition embedded in the plane:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0]],INPUT_CONES=>[[0]]);
# > print $f->AMBIENT_DIM;
# | 2
user_method AMBIENT_DIM() : FAN_AMBIENT_DIM {
my ($self)=@_;
return $self->FAN_AMBIENT_DIM;
}
# @category Geometry
# Returns the dimension of the linear space spanned by the fan.
# @return Int
# @example The fan living in the plane containing only the cone which consists of the ray pointing in positive x-direction is
# 1-dimensional:
# > $f = new PolyhedralFan(INPUT_RAYS=>[[1,0]],INPUT_CONES=>[[0]]);
# > print $f->DIM;
# | 1
user_method DIM {
my ($self)=@_;
if (!defined ($self->lookup("LINEALITY_SPACE | INPUT_LINEALITY | INPUT_RAYS | RAYS | FACET_NORMALS | LINEAR_SPAN_NORMALS"))) {
return $self->COMBINATORIAL_DIM;
}
return $self->FAN_DIM;
}
}
object topaz::HyperbolicSurface {
# The secondary fan of the hyperbolic surface.
# The k-th maximal cone corresponds to the Delaunay triangulation obtained by applying the k-th flip word of [[FLIP_WORDS]].
# See M. Joswig, R. Löwe, and B. Springborn. Secondary fans and secondary polyhedra of punctured Riemann surfaces. arXiv:1708.08714.
property SECONDARY_FAN : PolyhedralFan<Rational>;
rule SECONDARY_FAN, FLIP_WORDS : DCEL, PENNER_COORDINATES {
secondary_fan_and_flipwords($this);
}
}
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|