File: isotypic_components.h

package info (click to toggle)
polymake 4.12-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 35,992 kB
  • sloc: cpp: 168,768; perl: 43,375; javascript: 31,575; ansic: 3,007; java: 2,654; python: 633; sh: 268; xml: 117; makefile: 61
file content (230 lines) | stat: -rw-r--r-- 8,601 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once

#include "polymake/Map.h"
#include "polymake/Matrix.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/ListMatrix.h"
#include "polymake/SparseVector.h"
#include "polymake/linalg.h"
#include "polymake/group/orbit.h"
#include "polymake/group/group_tools.h"

namespace polymake { namespace group {

template <typename Perm>
SparseMatrix<Rational> permutation_matrix(const Perm& perm,
                                          const Array<Int>& coordinate_permutation)
{
   SparseMatrix<Rational> permutation_matrix(degree(perm), degree(perm));
   Int i = 0;
   for (auto pit = entire(perm); !pit.at_end(); ++pit, ++i)
      permutation_matrix(coordinate_permutation[*pit],
                         coordinate_permutation[i]) = 1;
   return permutation_matrix;
}

template <typename Perm>
Int inverse_perm_at(const Perm& perm, Int k)
{
   assert(k < perm.size());
   Int i = 0;
   for (auto pit = entire(perm); !pit.at_end(); ++pit, ++i)
      if (*pit == k)
         return i;
   std::ostringstream msg;
   wrap(msg) << "The array " << perm << " is not a permutation.";
   throw std::runtime_error(msg.str());
}

/*
template <typename InducedAction, typename RowType>
SparseMatrix<Rational> 
isotypic_projector_impl(const RowType& character,
                        const InducedAction& induced_action,
                        Int degree,
                        const ConjugacyClasses& conjugacy_classes,
                        Int order)
{
   SparseMatrix<Rational> isotypic_projector(degree, degree);
   for (Int i = 0; i<conjugacy_classes.size(); ++i) {
      for (auto cit = entire(conjugacy_classes[i]); !cit.at_end(); ++cit) {
         isotypic_projector += 
            character[i] // FIXME: conjugate here, once complex character tables are implemented
            * induced_action.induced_rep(*cit);
      }
   }

   //    chi(G.identity())/G.order() * sum([chi(g).conjugate() * rep.rho(g) for g in G])
   return isotypic_projector * character[0] / order;
}
*/

template <typename E>   
auto matrix_rep(const Array<E>& g, const Array<Int>& permutation_to_orbit_order)
{
   return permutation_matrix(g, permutation_to_orbit_order);
}
   
template <typename Scalar>
auto matrix_rep(const Matrix<Scalar>& g, const Array<Int>&)
{
   return g;
}
   
/*
    Implement the projector to the isotypic component given by the character //chi// using the formula

    pi_chi = chi(G.identity())/G.order() * sum([chi(g).conjugate() * rep.rho(g) for g in G])
 */
template <typename RowType, typename Element, typename Scalar>
SparseMatrix<CharacterNumberType> 
isotypic_projector_impl(const RowType& chi,
                        const ConjugacyClasses<Element>& conjugacy_classes,
                        const Array<Int>& permutation_to_orbit_order,
                        Int group_order,
                        const Scalar& )
{
   const Int deg(degree(conjugacy_classes[0][0]));
   SparseMatrix<CharacterNumberType> isotypic_projector(deg, deg);
   for (Int i = 0; i < conjugacy_classes.size(); ++i) {
      if (is_zero(chi[i])) continue;
      for (const auto& cc: conjugacy_classes[i]) {
         isotypic_projector += 
            chi[i] // FIXME: conjugate here, once complex character tables are implemented
            * matrix_rep(cc, permutation_to_orbit_order);
      }
   }
   isotypic_projector *= chi[0] / group_order;
   return isotypic_projector;
}

template <typename RowType, typename Element>
SparseMatrix<double> 
isotypic_projector_impl(const RowType& chi,
                        const ConjugacyClasses<Element>& conjugacy_classes,
                        const Array<Int>& permutation_to_orbit_order,
                        Int group_order,
                        const double& )
{
   const Int deg = degree(conjugacy_classes[0][0]);
   SparseMatrix<double> isotypic_projector(deg, deg);
   for (Int i = 0; i < conjugacy_classes.size(); ++i) {
      if (is_zero(chi[i])) continue;
      for (const auto& cc: conjugacy_classes[i]) {
         isotypic_projector +=
            chi[i] // FIXME: conjugate here, once complex character tables are implemented
            * matrix_rep(cc, permutation_to_orbit_order);
      }
   }
   isotypic_projector *= chi[0] / double(group_order);
   return isotypic_projector;
}
      
template <typename InducedAction, typename RowType, typename Element>
ListMatrix<SparseVector<CharacterNumberType> >
isotypic_basis_impl(const RowType& character,
                    const InducedAction& induced_action,
                    Int degree,
                    const ConjugacyClasses<Element>& conjugacy_classes,
                    Int order)
{
   ListMatrix<SparseVector<CharacterNumberType>>
      isotypic_basis(0, degree),
      kernel_so_far(unit_matrix<CharacterNumberType>(degree));
   // we fill the matrix row-wise. The entire matrix is
   //    chi(G.identity())/G.order() * sum([chi(g).conjugate() * rep.rho(g) for g in G])
   // and rep.rho(g) (k, g^{-1}(k)) = 1.
   for (Int k = 0; k < degree; ++k) {
      SparseVector<CharacterNumberType> new_row(degree);
      for (Int i = 0; i < conjugacy_classes.size(); ++i) {
         for (const auto& cc: conjugacy_classes[i]) {
            for (Int j = 0; j < degree; ++j)
               if (induced_action.index_of_inverse_image(cc, j) == k) {
                  new_row[j] += 
                     character[i]; // FIXME: conjugate here, once complex character tables are implemented
               }
         }
      }
      add_row_if_rowspace_increases(isotypic_basis, new_row, kernel_so_far);
   }

   return isotypic_basis * character[0] / order;
}

template <typename RowType, typename Element>
ListMatrix<SparseVector<CharacterNumberType> >
isotypic_basis_impl(const RowType& character,
                    const ConjugacyClasses<Element>& conjugacy_classes,
                    const Array<Int>& permutation_to_orbit_order,
                    Int order)
{
   const Int deg = degree(conjugacy_classes[0][0]);
   ListMatrix<SparseVector<CharacterNumberType>>
      isotypic_basis(0, deg),
      kernel_so_far(unit_matrix<CharacterNumberType>(deg));
   // we fill the matrix row-wise. The entire matrix is
   //    chi(G.identity())/G.order() * sum([chi(g).conjugate() * rep.rho(g) for g in G])
   // and rep.rho(g) (k, g^{-1}(k)) = 1.
   for (Int k = 0; k < deg; ++k) {
      SparseVector<CharacterNumberType> new_row(deg);
      for (Int i = 0; i < conjugacy_classes.size(); ++i) {
         if (is_zero(character[i])) continue;
         for (auto cit = entire(conjugacy_classes[i]); !cit.at_end(); ++cit) {
            new_row[permutation_to_orbit_order[inverse_perm_at(*cit,k)]] += 
               character[i]; // FIXME: conjugate here, once complex character tables are implemented
         }
      }
      add_row_if_rowspace_increases(isotypic_basis, new_row, kernel_so_far);
   }

   return isotypic_basis * (character[0] / order);
}


template <typename SparseMatrixType, typename Element>
IncidenceMatrix<> 
isotypic_supports_impl(const SparseMatrixType& S,
                       const Matrix<CharacterNumberType>& character_table,
                       const ConjugacyClasses<Element>& conjugacy_classes,
                       const Array<Int>& permutation_to_orbit_order,
                       Int order)
{
   const Int n_irreps = character_table.rows();
   IncidenceMatrix<> supp(S.rows(), n_irreps);
   for (Int i = 0; i < n_irreps; ++i) {
      const SparseMatrix<CharacterNumberType> image = isotypic_projector_impl(character_table[i], conjugacy_classes, permutation_to_orbit_order, order, CharacterNumberType()) * T(S);
      Int j = 0;
      for (auto cit = entire(cols(image)); !cit.at_end(); ++cit, ++j)
         if (!is_zero(*cit))
            supp(j,i) = 1;
   }
   return supp;
}

} }



// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: