File: contains.h

package info (click to toggle)
polymake 4.12-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 35,992 kB
  • sloc: cpp: 168,768; perl: 43,375; javascript: 31,575; ansic: 3,007; java: 2,654; python: 633; sh: 268; xml: 117; makefile: 61
file content (288 lines) | stat: -rw-r--r-- 9,074 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once

#include "polymake/client.h"
#include "polymake/linalg.h"
#include "polymake/Vector.h"
#include "polymake/Matrix.h"
#include "polymake/polytope/convex_hull.h"
#include "polymake/polytope/separating_hyperplane.h"


namespace polymake{ 
namespace polytope{

template <typename Scalar>
bool contains_V_H(BigObject p_in, BigObject p_out){
   // get the Vertex description of the second polytopr
   Matrix<Scalar> V_in = p_in.give("RAYS | INPUT_RAYS");
   const OptionSet opt;
   for(const auto& v : rows(V_in)){
      if(!cone_H_contains_point(p_out, v, opt)) return false;
   }

   Matrix<Scalar> L_in;
   if (p_in.lookup("LINEALITY_SPACE | INPUT_LINEALITY") >> L_in){
      for(const auto& l : rows(L_in)){
         if(!cone_H_contains_point(p_out, l, opt)) return false;
         if(!cone_H_contains_point(p_out, -l, opt)) return false;
      }
   }
   return true;
};


template<typename Scalar>
bool solve_same_description_LPs(const Matrix<Scalar>& Arays, const Matrix<Scalar>& Alin, const Matrix<Scalar>& Brays, const Matrix<Scalar>& Blin){
   // Check whether the cone A generated by the rays Arays and lineality Alin
   // is contained in the cone B (= Brays +- Blin).

   // Lineality must be contained in lineality, and this can be checked via
   // linear algebra.
   if(rank(Blin) != rank(Blin / Alin)) return false;

   // Now we only have to check whether every ray of Arays is contained in the
   // cone B, i.e. we make an LP to find a linear combination in terms of Brays
   // and Blin. This is already implemented elsewhere.
   BigObject container("Cone", mlist<Scalar>());
   container.take("INPUT_RAYS") << Brays;
   container.take("INPUT_LINEALITY") << Blin;
   const OptionSet opt;

   for(const auto& a : rows(Arays)){
      if(!cone_contains_point(container, a, opt)) return false;
   }
   return true;
}



template <typename Scalar>
bool contains_H_H_via_LP(BigObject p_in, BigObject p_out){
   Matrix<Scalar> F_out = p_out.lookup("FACETS | INEQUALITIES");
   Matrix<Scalar> E_out;

   if (!(p_out.lookup("LINEAR_SPAN | EQUATIONS") >> E_out)){
      E_out = zero_matrix<Scalar>(0, F_out.cols());
   }

   Matrix<Scalar> F_in = p_in.lookup("FACETS | INEQUALITIES");
   Matrix<Scalar> E_in;

   if (!(p_in.lookup("LINEAR_SPAN | EQUATIONS") >> E_in)){
      E_out = zero_matrix<Scalar>(0, F_out.cols());
   }

   // solve_same_description_LPs tries to find a linear combination for every
   // ray/lineality of the small cone in terms of the rays/linealities of the
   // larger cone. To apply this here we check the opposite containment of the
   // dual cones.
   return solve_same_description_LPs(F_out, E_out, F_in, E_in);
};


template <typename Scalar>
bool contains_V_V_via_LP(BigObject p_in, BigObject p_out)
{
   Matrix<Scalar> V_out = p_out.lookup("RAYS | INPUT_RAYS");
   Matrix<Scalar> L_out;

   if (!(p_out.lookup("LINEALITY_SPACE | INPUT_LINEALITY") >> L_out)){
      L_out = zero_matrix<Scalar>(0, V_out.cols());
   }

   Matrix<Scalar> V_in = p_in.lookup("RAYS | INPUT_RAYS");
   Matrix<Scalar> L_in;

   if (!(p_in.lookup("LINEALITY_SPACE | INPUT_LINEALITY") >> L_in)){
      L_in = zero_matrix<Scalar>(0, V_out.cols());
   }

   // solve_same_description_LPs tries to find a linear combination for every
   // ray/lineality of the small cone in terms of the rays/linealities of the
   // larger cone.
   return solve_same_description_LPs(V_in, L_in, V_out, L_out);
};


// Checks if a given Polytope p_in is a subset of a other given  Polytope p_out.
// For each combination of discriptions (by Vertices or by Facets) it use another algorithm.
// @param BigObject p_in    The inner Polytope
// @param BigObject p_out   the outer Polytope
// @return Bool
template <typename Scalar>
bool contains(BigObject p_in, BigObject p_out)
{
   // Small sanity check to avoid segfaults
   const Int dim_in = p_in.give("CONE_AMBIENT_DIM");
   const Int dim_out = p_out.give("CONE_AMBIENT_DIM");
   if(dim_in != dim_out) throw std::runtime_error("Cones/Polytopes do no live in the same ambient space.");

   if(p_in.isa("Polytope") && p_out.isa("Polytope")){
      const bool feasible_in = p_in.give("FEASIBLE");
      if(!feasible_in) return true;
      const bool feasible_out = p_out.give("FEASIBLE");
      if(!feasible_out) return false;
   }

   // Ensure that we have a V-description of p_in and an H-description of
   // p_out.
   p_in.give("RAYS | INPUT_RAYS");
   p_out.give("FACETS | INEQUALITIES");
   return contains_V_H<Scalar>(p_in, p_out);
}

// now comes the contains function for balls und polytopes

template <typename Scalar>
bool contains_ball_dual(Vector<Scalar> c, Scalar r, BigObject p_out){
  
  // homogenize center of ball
  c = c/c[0];
  
  // get the outer description of p_out
  Matrix<Scalar> F_out = p_out.lookup("FACETS | INEQUALITIES");
  Matrix<Scalar> E_out;

  if (p_out.lookup("AFFINE_HULL | EQUATIONS") >> E_out){
    // work with inequalities
    if(E_out.rows()>0){
      return false;
    }
  }
  
  // scalar product with worst case direktion for each
  // inequality
  Vector<Scalar> F_out_norms = zero_vector<Scalar>(
          F_out.rows());
  for(int i=0; i<F_out.rows(); ++i){
    for(int j=1; j<F_out.cols(); ++j){
      F_out_norms[i] += sqr(F_out(i,j));
    }
  }
  
  Vector<Scalar> b = F_out*c;
  
  // compute (F_out*c)^2 - r^2 * F_out_norm  
  // and use this to check if F_out*c >= r * F_out_norm^(1/2)
  for(int i=0; i<b.size(); ++i){
    b[i] = sqr(b[i]) - sqr(r)*F_out_norms[i];
    
    if(b[i]<0){
      return false;
    }
  }

  return true;
}

template <typename Scalar>
bool contains_ball_primal(Vector<Scalar> c, Scalar r, BigObject p_out){
  // Since this problem is co-NP complete it will be changed to
  // the case of ball_dual
  p_out.give("FACETS | LINEAR_SPAN");
  return contains_ball_dual<Scalar>(c, r, p_out);
}


// Checks if a given Ball B(c,r) is a subset of a other given  Polytope p_out.
// For each combination of discriptions (by Vertices or by Facets) it use another algorithm.
// @param Vector c          the center of the ball
// @param Scalar r          the radius of the ball
// @param BigObject p_out   the outer Polytope
// @return Bool
template <typename Scalar>
bool polytope_contains_ball(Vector<Scalar> c, Scalar r, BigObject p_out)
{
  // check in which way p_out was given
  if (p_out.exists("FACETS | INEQUALITIES")){
  	return contains_ball_dual<Scalar>(c, r, p_out);
  }else{
    // p_out is given by vertices
    return contains_ball_primal<Scalar>(c, r, p_out);
  }
}

template <typename Scalar>
bool contains_primal_ball(BigObject p_in, Vector<Scalar> c, Scalar r){
  // get the vertex descrition of p_in
  Matrix<Scalar> V_in = p_in.give("RAYS | INPUT_RAYS");
  Matrix<Scalar> L_in;
  
  // check if p_in has rays
  for(int i=0; i<V_in.rows(); ++i){
    if( is_zero(V_in(i,0)) ){
      return false;
    }
  }
  
  // check p_in has a not empty lineality space
  if (p_in.lookup("LINEALITY_SPACE | INPUT_LINEALITY") >> L_in){
    if (L_in.rows()>0){
      return false;
    }
  }
  
  // check if the ball contains all vertices of p_in
  // so we check if for each vertex v
  // ||c-v||² <= r² 
  r = sqr(r);
  c= c/c[0];
  Scalar r_c;
  for(int i=0; i<V_in.rows(); ++i){
  	r_c = sqr(c-V_in.row(i));
    if(r_c > r){
      return false;
    }
  }
  
  return true; 
}


template <typename Scalar>
bool contains_dual_ball(BigObject p_in, Vector<Scalar> c, Scalar r){
  // Since this problem is co-NP complete it will be changed to
  // the case of primal_ball
  p_in.give("RAYS | INPUT_RAYS");
  return contains_primal_ball<Scalar>(p_in, c, r);
}


// Checks if a given Polytope p_in is a subset of a given Ball B(c,r).
// For each combination of discriptions (by Vertices or by Facets) it use another algorithm.
// @param BigObject p_in    the inner Polytope
// @param Vector c          the center of the ball
// @param Scalar r          the radius of the ball
// @return Bool
template <typename Scalar>
bool polytope_contained_in_ball(BigObject p_in, Vector<Scalar> c, Scalar r)
{
  // check in which way p_in was given
  if (p_in.exists("RAYS | INPUT_RAYS")){
    return contains_primal_ball<Scalar>(p_in, c, r);
  }else{
    // p_out is given by inequalities
    return contains_dual_ball<Scalar>(p_in, c, r);
  }
}


} // namespace polytope
} // namespace polymake