File: optimal_contains.h

package info (click to toggle)
polymake 4.12-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 35,992 kB
  • sloc: cpp: 168,768; perl: 43,375; javascript: 31,575; ansic: 3,007; java: 2,654; python: 633; sh: 268; xml: 117; makefile: 61
file content (650 lines) | stat: -rw-r--r-- 19,009 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once

#include "polymake/client.h"
#include "polymake/linalg.h"
#include "polymake/Vector.h"
#include "polymake/Matrix.h"
#include "polymake/polytope/convex_hull.h"

#include <cstdlib>
#include <vector>
#include <list>
#include <iterator>


#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
#elif defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
#pragma GCC diagnostic ignored "-Wzero-as-null-pointer-constant"
#endif

#include "Miniball/Miniball.hpp"

#if defined(__clang__)
#pragma clang diagnostic pop
#elif defined(__GNUC__)
#pragma GCC diagnostic pop
#endif

namespace polymake{ namespace polytope{

// now comes the part of optimal containment
// so we want to solve for to polytopes P1 and P2 the problem
// max s such that sP1+t is a subset of P2
// this makes now sences for cones since positive scaling didn't change cones
// in generell the sum of a  point and a cone is now cone animore

template <typename Scalar>
std::pair<Scalar,Vector<Scalar>> optimal_contains_primal_dual(BigObject p_in, BigObject p_out)
{
  // get the outer description of p_out
  Matrix<Scalar> F_out = p_out.lookup("FACETS | INEQUALITIES");
  Matrix<Scalar> E_out;
  
  // check if a solution exist
  if (!p_out.give("FEASIBLE")){
    if(p_in.give("FEASIBLE")){
      Scalar inf = std::numeric_limits<Scalar>::infinity();
      Vector<Scalar> t(F_out.cols());
      t[0] = 1;
      return std::make_pair( inf,t);
    }else{
      Vector<Scalar> t(F_out.cols());
      t[0] = 1;
      return std::make_pair(0, t); 
    }
  }

  if (p_out.lookup("AFFINE_HULL | EQUATIONS") >> E_out){
    // write equations as inequalities
    F_out /= E_out/(-E_out);
  }

  // get the vertex descrition of p_in
  Matrix<Scalar> V_in = p_in.give("VERTICES | POINTS");
  Matrix<Scalar> L_in;
  
  
  // check lineality space of V_in
  if (p_in.lookup("LINEALITY_SPACE | INPUT_LINEALITY") >> L_in){
    Matrix<Scalar> b = F_out * T(L_in);

    for(int i=0; i<b.rows();++i){
      for(int j=0;j<b.cols();++j){
        if (b(i,j) != 0){
          // p_in has to become a single point in p_out
          Vector<Scalar> t = p_out.give("ONE_VERTEX");
          return std::make_pair(Scalar(0), t);
        }
      }
    }
  }
  
  // check if rays of p_in in p_out
  // and build set of vertices of p_in
  Set<Int> vertices_in;
  Vector<Scalar> b_vector;
  
  for(int i=0;i<V_in.rows();++i){
    // check of i-th row is a ray or a vertex
    if ( is_zero( V_in(i,0) ) ){
      // check if F_out * Ray >= 0
      b_vector= F_out * V_in.row(i);
      
      for(int j=0;j<F_out.rows();++j){
        if(b_vector[j]<0){
          Vector<Scalar> t = p_out.give("ONE_VERTEX");
          return std::make_pair(Rational(0), t);
        }
      }
    }else{
      vertices_in += i;
    }
  }
  
  Matrix<Scalar> Vertices_in = V_in.minor(vertices_in,All);
  
  // set the additional 1 of each vertex to zero
  for(int i=0; i<Vertices_in.rows(); ++i){
    Vertices_in(i,0) = 0;
  }
  
  // now construct a polytop on t, s and minimize s over it
  Matrix<Scalar> b = F_out*T(Vertices_in);
  Matrix<Scalar> F_new( F_out.rows() * Vertices_in.rows(), 
                        1 + F_out.cols() );


  for(int i=0;i<F_out.rows();i++){
    for(int j=0;j<Vertices_in.rows();j++){
    
      for(int l=0;l<F_out.cols();l++){
        F_new( i * Vertices_in.rows() + j, l ) = F_out(i,l);
      }
      F_new( i * Vertices_in.rows() + j, F_out.cols() ) = b(i,j);
    }
  }

  

  Vector<Scalar> costfkt(F_out.cols()+1);
  costfkt[F_out.cols()] = 1;

  BigObject p_new(p_out.type());
  p_new.take("INEQUALITIES") << F_new/costfkt;
  p_new.take("LP.LINEAR_OBJECTIVE") << costfkt;
  
  Vector<Scalar> t_s = p_new.give("LP.MAXIMAL_VERTEX");
  Vector<Scalar> t = t_s.slice( sequence(0, F_out.cols()) );

  return std::make_pair(t_s[F_out.cols()], t);
}

template <typename Scalar>
std::pair<Scalar,Vector<Scalar>> optimal_contains_dual_dual(BigObject p_in, BigObject p_out){
  // to solve the problem we solve problem 
  // min s such that p_in subset s*p_out + t
  
  // get the outer description of p_out
  Matrix<Scalar> F_out = p_out.lookup("FACETS | INEQUALITIES");
  Matrix<Scalar> E_out;

  if (p_out.lookup("AFFINE_HULL | EQUATIONS") >> E_out){
    // write equations as inequalities
    F_out /= E_out/(-E_out);
  }
  
  // get the outer description of p_out
  Matrix<Scalar> F_in = p_in.lookup("FACETS | INEQUALITIES");
  Matrix<Scalar> E_in;

  if (p_in.lookup("AFFINE_HULL | EQUATIONS") >> E_in){
    // write equations as inequalities
    F_in /= E_in/(-E_in);
  }
  
  
  // construct a polyope on the matrix D, the vector t and s,
  // With D*A_in = A_out, D*b_in <= b_out*s + A_out*t for
  // [b_in,A_in]=F_in and [b_out,A_out]=F_out.
  
  // define equations
  Matrix<Scalar> E_new( (F_out.cols()-1) * F_out.rows(),
                        1 + F_out.cols() + F_out.rows() *
                          F_in.rows() );
                                         
  int k=0;                                
  for(int i=0; i<F_out.rows(); ++i){
    for(int j=1; j<F_out.cols(); ++j){
      E_new(k,0) = - F_out(i,j);
      

      for(int l=0; l<F_in.rows(); ++l){
        E_new(k, 1 + F_out.cols() + i*F_in.rows() + l) = F_in(l,j);
      }
      k++;
    }
  }


  
  
  // define inequalities 
  Matrix<Scalar> F_new(  F_out.rows(),
                         1 + F_out.cols() + F_out.rows() *
                           F_in.rows() );
  
  for(int i=0; i<F_out.rows(); i++){
    //the coefficient for s
    F_new(i,1) = F_out(i,0);
    
    for(int j=1; j<F_out.cols(); ++j){
      // the coefficients for t
      F_new(i,1+j) = -F_out(i,j);
    }
    
    for(int l=0; l<F_in.rows(); ++l){
      // the coefficients for D
      F_new(i, 1 + F_out.cols() + i*F_in.rows() +l ) = - F_in(l,0);
    }
  }
    
  // add positiv conditions
  Matrix<Scalar> Pos = zero_matrix<Scalar>(F_out.rows() * 
                         F_in.rows(), 1 + F_out.cols())|
                       unit_matrix<Scalar>(F_out.rows() *
                         F_in.rows());
  
  // define cost funktion
  Vector<Scalar> costfkt(1 + F_out.cols() + F_out.rows() *
                          F_in.rows());
  costfkt[1] = 1;
  
  
  // define new Polytope
  BigObject p_new(p_out.type());
  p_new.take("INEQUALITIES") << F_new/Pos/costfkt;
  p_new.take("EQUATIONS") << E_new.minor(basis(E_new).first,All);
  p_new.take("LP.LINEAR_OBJECTIVE") << costfkt;
  
  
  // check if the are a D as wanted
  if(!p_new.give("FEASIBLE")){
    Scalar s = 0;
    if(p_out.give("FEASIBLE")){
      Vector<Scalar> t = p_out.give("ONE_VERTEX");
      return std::make_pair(s,t);
    }else{
      Vector<Scalar> t(F_out.cols());
      t[0] = 1;
      return std::make_pair(\
              - std::numeric_limits<Scalar>::infinity(), t);
    }
  }
    
  Vector<Scalar> t_s_D = p_new.give("LP.MINIMAL_VERTEX");

  // check solution
  if (t_s_D[1]>0){
    // convert solution
    Scalar s = 1/t_s_D[1];
    Vector<Scalar> t( F_out.cols() );
    t[0] = 1;
    
    for(int i= 1; i<F_out.cols(); ++i){
      t[i] = - s*t_s_D[1+i];      
    }
    return std::make_pair(s, t);
  }else{
    // s*p_in is a subset of p_out for all s>0
    Scalar inf = std::numeric_limits<Scalar>::infinity();
    Vector<Scalar> t(F_out.cols());
    t[0] = 1;
    return std::make_pair(inf, t);
  }
  
}

template <typename Scalar>
std::pair<Scalar,Vector<Scalar>> optimal_contains_primal_primal(BigObject p_in, BigObject p_out){
   
  // load the vertex discription of p_out
  Matrix<Scalar> V_out = p_out.lookup("VERTICES | POINTS");
  Matrix<Scalar> L_out;

  if ( p_out.lookup("LINEALITY_SPACE | INPUT_LINEALITY") >> L_out){
    // add lines to vertices and rays
    V_out /= L_out/(-L_out);
  }
  
  // load the vertex discription of p_in
  Matrix<Scalar> V_in = p_in.lookup("VERTICES | POINTS");
  Matrix<Scalar> L_in;

  if ( p_in.lookup("LINEALITY_SPACE | INPUT_LINEALITY") >> L_in){
    // add lines to vertices and rays
    V_in /= L_in/(-L_in);
  }

  // build set of vertices of p_in
  Set<Int> vertices_in;

  for(int i=0;i<V_in.rows();++i){
    // check of i-th row is a ray or a vertex
    if ( !is_zero(V_in(i,0)) ){
      vertices_in += i;
    }
  }
  
  // construct a polyope on the matrix D, the vector t and s,
  // With 
  // [s*V + t^T ones_Vector]/[R]  = D*V_out 
  // where V is the matrix, which contains all Vertices of 
  // p_in, and R is the matrix, which contains all Rays of 
  // p_in
  Matrix<Scalar> E_new( V_in.rows()*V_in.cols(),
                        1 + V_in.cols() + V_in.rows()*V_out.rows() );
                            
  
  for(int i=0; i<V_in.rows(); ++i){
  
    for(int j=0; j<V_in.cols(); ++j){
      
      
      // check is V_in.row(i) is a vertex or ray
      if(vertices_in.contains(i)){
        if(j==0){
          // set condition for convex combination
          E_new(i*V_in.cols() + j, 0) = -V_in(i,j);
        }else{
          // set factor for s
          E_new(i*V_in.cols() + j, 1) = -V_in(i,j);
        
        
          // add minus t
          for(int k=1; k<V_in.cols(); ++k){
            E_new(i*V_in.cols() + j, 1+k) = -1;
          }
        }
      }else{
        // add conditions for the rays
        E_new(i*V_in.cols() + j, 0) = -V_in(i,j);
        
      }
      
      // add factors for D
      for(int l=0; l<V_out.rows(); ++l){
        E_new(i*V_in.cols() + j, 
              1 + V_in.cols() + i*V_out.rows() + l) = V_out(l,j);
      }
    }
  }
  
  // add non-negativity conditions for D
  Matrix<Scalar> Pos = zero_matrix<Scalar>(V_in.rows()*V_out.rows(),
                                           1 + V_in.cols())|
                       unit_matrix<Scalar>(V_in.rows()*V_out.rows());
  
  // define cost funktion
  Vector<Scalar> costfkt(1 + V_out.cols() + 
                         V_out.rows() * V_in.rows());
  costfkt[1] = 1;
  
  
  // define new Polytope
  BigObject p_new(p_out.type());
  p_new.take("INEQUALITIES") << Pos;
  p_new.take("EQUATIONS") << E_new.minor(basis(E_new).first,All);
  p_new.take("LP.LINEAR_OBJECTIVE") << costfkt;
  
  // check if p_new is feasible
  if(!p_new.give("FEASIBLE")){
    Scalar s = 0;
    Vector<Scalar> t = p_out.give("ONE_VERTEX");
    return std::make_pair(s, t);
  }
  
  Vector<Scalar> s_t_D = p_new.give("LP.MAXIMAL_VERTEX");

  Vector<Scalar> t(V_out.cols());
  t[0] = 1;
  
  t.slice(sequence(1,V_out.cols()-1)) = s_t_D.slice(
                                         sequence(2,V_out.cols()-1));


  return std::make_pair(s_t_D[1], t);
}

template <typename Scalar>
std::pair<Scalar,Vector<Scalar>> optimal_contains_dual_primal(BigObject p_in, BigObject p_out){
  // Since this problem is co-NP complete it will be changed to
  // it wil be changed to the case of primal_dual
  
  // load the outer description of p_in
  Matrix<Scalar> F_in = p_in.lookup("FACETS | INEQUALITIES");
  Matrix<Scalar> E_in;
  convex_hull_result<Scalar> hull_in;
  std::string got_property;
  
  if(p_in.lookup_with_property_name(
            "AFFINE_HULL | EQUATIONS", got_property) >> E_in){
    if(got_property == "EQUATIONS"){
      E_in = E_in.minor(basis(E_in).first,All);
    }
  }else{
    E_in = zero_matrix<Scalar>(0, F_in.cols());
  }
  
  // get a inner description of p_in
  hull_in = enumerate_vertices(F_in, E_in, true);
  
  
  BigObject p_in_new(p_in.type());
  p_in_new.take("POINTS") << hull_in.first;
  p_in_new.take("EQUATIONS") << hull_in.second;
  
  // load the inner description of p_out
  Matrix<Scalar> V_out = p_out.lookup("RAYS | INPUT_RAYS"); 
  Matrix<Scalar> L_out;
  convex_hull_result<Scalar> hull_out;
  
  if(p_out.lookup_with_property_name(
            "LINEALITY_SPACE | INPUT_LINEALITY",
            got_property) >> L_out){
    if(got_property == "INPUT_LINEALITY"){
      L_out = L_out.minor(basis(L_out).first,All);
    }
  }else{
    L_out = zero_matrix<Scalar>(0, V_out.cols());
  }
  
  // get a outer description of p_out
  hull_out = enumerate_facets(V_out, L_out, true);
  
  
  BigObject p_out_new(p_out.type());
  p_out_new.take("INEQUALITIES") << hull_out.first;
  p_out_new.take("EQUATIONS") << hull_out.second;
  
  
  return optimal_contains_primal_dual<Scalar>(p_in_new, p_out_new);
}

// Compute a vector t and the minimal scalar s, such that for 
// a given Polytope p_in, s*p_in + t is a subset of a other 
// given  Polytope p_out.
// For each combination of discriptions (by Vertices or by Facets)
// it use another algorithm.
// @param BigObject p_in    The inner Polytope
// @param BigObject p_out   the outer Polytope
// @return pair<Scalar,Vector>
template <typename Scalar>
std::pair<Scalar,Vector<Scalar>> optimal_contains(BigObject p_in, BigObject p_out)
{
   // check in which way p_out was given
   if (p_out.exists("FACETS | INEQUALITIES")){
    
      // check in which way p_in was given
      if (p_in.exists("RAYS | INPUT_RAYS")){
         //p_in is given by vertices
         
         return optimal_contains_primal_dual<Scalar>(p_in,p_out);

      }else{
         // p_in is given by inequalities
         
         return optimal_contains_dual_dual<Scalar>(p_in,p_out);
      }

   }else{
      // p_out is given by vertices
      // check in which way p_in was given 
      if (p_in.exists("RAYS | INPUT_RAYS")){
         return optimal_contains_primal_primal<Scalar>(p_in, p_out);


      }else{
         // p_in is given by inequalities
         return optimal_contains_dual_primal<Scalar>(p_in,p_out);

      }
   }

}

// now comes the part of optimal containment for polytopes
// with balls




template <typename Scalar>
std::pair<Scalar,Vector<Scalar>> minimal_ball_primal(BigObject p_in){
  
  // load vertices and rays
  Matrix<Scalar> V_in = p_in.lookup("VERTICES | POINTS");
  
  // set dimension of the space (not homogenized)
  const int d = int(V_in.cols()) - 1;
  
  
  // store the vertices in a list of std vectors
  // and check that there are no rays
  std::list<std::vector<Scalar>> vertices;
  for(int i=0; i<V_in.rows(); ++i){
    std::vector<Scalar> v(d);
    for(int j=1; j<V_in.cols(); ++j){
      v[j-1] = V_in(i,j);
    }
    if(V_in.row(i)[0]!=0){
      vertices.push_back(v);
    }else{
      Scalar inf = std::numeric_limits<Scalar>::infinity();
      Vector<Scalar> t(d+1);
      t[0] = 1;
      return std::make_pair(inf, t);
    }
  }
  
  // check if the lineality space is empty
  Matrix<Scalar> L_in;
  if(p_in.lookup("LINEALITY_SPACE | INPUT_LINEALITY") >> L_in){
    L_in = remove_zero_rows(L_in);
    if(L_in.rows()>0){
      Scalar inf = std::numeric_limits<Scalar>::infinity();
      return std::make_pair(inf,
                            zero_vector<Scalar>(d));
    }
  }
  
  // define the types of iterators through the points and 
  // their coordinates
  typedef typename std::list<std::vector<Scalar> >::const_iterator PointIterator; 
  typedef typename std::vector<Scalar>::const_iterator CoordIterator;

  // create an instance of Miniball
  typedef Miniball::Miniball <Miniball::CoordAccessor<
                      PointIterator, CoordIterator>> MB;
  MB mb (d, vertices.begin(), vertices.end());

  //get results
  //center
  const Scalar* center = mb.center();
  Vector<Scalar> c(d+1);
  c[0] = 1;
  for(int i=0; i<d; ++i){
    c[i+1] = Scalar(center[i]);
  }
  
  //radius
  Scalar r = Scalar(mb.squared_radius());
  
  // number of support points
  Scalar nr = Scalar(mb.nr_support_points());
  
  // relative error: by how much does the ball fail to contain all 
  //                 points? 
  //                 tiny positive numbers come from roundoff and
  //                 are ok
  // suboptimality: by how much does the ball fail to be the smallest
  //                enclosing ball of its support points? should 
  //                be 0 
  //                in most cases, but tiny positive numbers are
  //                again ok
  Scalar suboptimality;
  Scalar relative_error = Scalar(mb.relative_error (suboptimality));

  // check if the out put is not correct and warn the user
  if(suboptimality > 0 or relative_error>0 ){
    cout << "The solution is not correct";
    cout << endl << "Number of support points:\t";
    cout << nr << endl;
    cout << "Relative error:\t";
    cout << relative_error << endl;
    cout << "(how much does the ball fail to contain all points)" << endl;
    cout << "Suboptimality:\t";
    cout << suboptimality << endl;
    cout << "(how much does the ball fail to be the smallest enclosing ball of its support points)" << endl << endl;
  }
  return std::make_pair(r, c);
  //return std::make_pair(Scalar(1), zero_vector<Scalar>(2));

}

template <typename Scalar>
std::pair<Scalar,Vector<Scalar>> minimal_ball_dual(BigObject p_in){
  // Since this problem is co-NP complete it will be changed to
  // it wil be changed to the case of ball_dual
  
  // load the outer description of p_in
  Matrix<Scalar> F_in = p_in.lookup("FACETS | INEQUALITIES"); 
  Matrix<Scalar> E_in;
  convex_hull_result<Scalar> hull_in;
  std::string got_property;
  
  if(p_in.lookup_with_property_name("AFFINE_HULL | EQUATIONS",\
            got_property) >> E_in){
    if(got_property == "EQUATIONS"){
      E_in = E_in.minor(basis(E_in).first,All);
    }
  }else{
    E_in = zero_matrix<Scalar>(0, F_in.cols());
  }
  
  // get a outer description of p_out
  hull_in = enumerate_facets(F_in, E_in, true);
  
  
  BigObject p_in_new(p_in.type());
  p_in_new.take("POINTS") << hull_in.first;
  p_in_new.take("INPUT_LINEALITY") << hull_in.second;
  
  
  return minimal_ball_primal<Scalar>(p_in_new);
}



// Compute a vector c and the maximal scalar r, such that for 
// a given Polytope p_in is a subset of the Ball B(c,r).
// For each combination of discriptions (by Vertices or by 
// Facets) it use another algorithm.
// @param BigObject p_out   the outer Polytope
// @return pair<Scalar,Vector>
template <typename Scalar>
std::pair<Scalar,Vector<Scalar>> minimal_ball(BigObject p_in)
{   
  // check in which way p_in was given
  if (p_in.exists("VERTICES | POINTS")){    
    return minimal_ball_primal<Scalar>(p_in);
    
  }else{
    // p_in was given by facets
    return minimal_ball_dual<Scalar>(p_in);
  }
}

}}