1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
# An affine cone with an exact coordinate type, like Rational.
declare object_specialization ExactCoord<Scalar> = Cone<Scalar> [is_ordered_field_with_unlimited_precision(Scalar)] {
rule TRIVIAL : LINEAR_SPAN, CONE_AMBIENT_DIM {
$this->TRIVIAL = rank($this->LINEAR_SPAN) == $this->CONE_AMBIENT_DIM;
}
# A Cone defined with an empty [[RAYS]] or [[INPUT_RAYS]] matrix gets trivial [[FACETS]] assigned
# Note that all convex hull clients need at least one ray.
rule FACETS, LINEAR_SPAN : CONE_AMBIENT_DIM {
my $ambientdim = $this->CONE_AMBIENT_DIM;
$this->FACETS = new Matrix<Scalar>(0, $ambientdim);
my $ls = $this->lookup("LINEALITY_SPACE | INPUT_LINEALITY");
if (defined($ls) && $ls->rows > 0) {
$this->LINEAR_SPAN = null_space($ls);
} else {
$this->LINEAR_SPAN = unit_matrix<Scalar>($ambientdim);
}
}
precondition : defined(INPUT_RAYS | RAYS);
precondition : INPUT_RAYS | RAYS {
$this->give("INPUT_RAYS | RAYS")->rows == 0;
}
weight 1.10;
# @category Convex hull computation
# Use the sequential (beneath-beyond) convex hull algorithm. It performs well at lower dimensions
# and produces a triangulation of the polytope as a byproduct.
label beneath_beyond
rule beneath_beyond.convex_hull.primal, default.triangulation.poly, beneath_beyond.convex_hull: \
FACETS, LINEAR_SPAN, RAYS_IN_FACETS, DUAL_GRAPH.ADJACENCY, TRIANGULATION(new).FACETS, ESSENTIALLY_GENERIC : RAYS {
beneath_beyond_find_facets($this, non_redundant => true);
}
weight 4.10;
incurs FacetPerm;
rule beneath_beyond.convex_hull.primal, beneath_beyond.convex_hull: \
FACETS, RAYS, LINEAR_SPAN, LINEALITY_SPACE, RAYS_IN_FACETS, DUAL_GRAPH.ADJACENCY, TRIANGULATION_INT : INPUT_RAYS {
beneath_beyond_find_facets($this);
}
weight 4.10;
incurs FacetPerm;
rule beneath_beyond.convex_hull.dual, beneath_beyond.convex_hull: \
RAYS, LINEALITY_SPACE, RAYS_IN_FACETS, GRAPH.ADJACENCY : FACETS {
beneath_beyond_find_vertices($this, non_redundant => true);
}
weight 4.10;
incurs VertexPerm;
rule beneath_beyond.convex_hull.dual, beneath_beyond.convex_hull: \
FACETS, RAYS, LINEAR_SPAN, LINEALITY_SPACE, RAYS_IN_FACETS, GRAPH.ADJACENCY : INEQUALITIES {
beneath_beyond_find_vertices($this);
}
weight 4.10;
incurs VertexPerm;
rule default.triangulation.poly: TRIANGULATION(new).FACETS : RAYS {
$this->TRIANGULATION->FACETS=placing_triangulation($this->RAYS, non_redundant => true);
}
weight 4.10;
rule LINEALITY_SPACE : INPUT_RAYS, CONE_AMBIENT_DIM {
$this->LINEALITY_SPACE = lineality_via_lp<Scalar>($this->INPUT_RAYS, $this->lookup("INPUT_LINEALITY") // new Matrix<Scalar>(0,$this->CONE_AMBIENT_DIM));
}
weight 4.5;
rule LINEAR_SPAN : INEQUALITIES, CONE_AMBIENT_DIM {
$this->LINEAR_SPAN = lineality_via_lp<Scalar>($this->INEQUALITIES, $this->lookup("EQUATIONS") // new Matrix<Scalar>(0,$this->CONE_AMBIENT_DIM));
}
weight 4.5;
}
object Polytope {
label jarvis
rule jarvis.convex_hull.primal, jarvis.convex_hull: VERTICES : POINTS {
$this->VERTICES=jarvis($this->POINTS);
}
precondition : BOUNDED, CONE_AMBIENT_DIM { $this->BOUNDED and $this->CONE_AMBIENT_DIM==3 }
weight 1.50;
incurs VertexPerm;
rule VERTICES, AFFINE_HULL : ZONOTOPE_INPUT_POINTS, CENTERED_ZONOTOPE {
my $m = zonotope_vertices_fukuda($this->ZONOTOPE_INPUT_POINTS, centered_zonotope => $this->CENTERED_ZONOTOPE);
$this->VERTICES = $m;
$this->AFFINE_HULL = null_space($m);
}
weight 2.50;
incurs VertexPerm;
rule FEASIBLE, CONE_AMBIENT_DIM : ZONOTOPE_INPUT_POINTS {
$this->FEASIBLE=$this->ZONOTOPE_INPUT_POINTS->rows > 0;
$this->CONE_AMBIENT_DIM=$this->ZONOTOPE_INPUT_POINTS->cols;
}
weight 0.10;
rule TILING_LATTICE : VERTICES, VERTICES_IN_FACETS, VERTEX_BARYCENTER, ZONOTOPE_INPUT_POINTS {
$this->TILING_LATTICE = zonotope_tiling_lattice($this);
}
weight 2.50;
rule SIMPLEXITY_LOWER_BOUND : COMBINATORIAL_DIM, VERTICES, MAX_INTERIOR_SIMPLICES, VOLUME, COCIRCUIT_EQUATIONS {
$this->SIMPLEXITY_LOWER_BOUND = simplexity_lower_bound($this->COMBINATORIAL_DIM, $this->VERTICES, $this->MAX_INTERIOR_SIMPLICES, $this->VOLUME, $this->COCIRCUIT_EQUATIONS);
}
} # /Polytope
# @category Producing a polytope from scratch
# Create a zonotope from a matrix whose rows are input points or vectors.
#
# This method merely defines a Polytope object with the property
# [[ZONOTOPE_INPUT_POINTS]].
# @param Matrix<Scalar> M input points or vectors
# @option Bool rows_are_points true if M are points instead of vectors; default true
# @option Bool centered true if output should be centered; default true
# @return Polytope<Scalar> the zonotope generated by the input points or vectors
# @example [nocompare]
# The following produces a parallelogram with the origin as its vertex barycenter:
# > $M = new Matrix([[1,1,0],[1,1,1]]);
# > $p = zonotope($M);
# > print $p->VERTICES;
# | 1 0 -1/2
# | 1 0 1/2
# | 1 -1 -1/2
# | 1 1 1/2
# @example [nocompare]
# The following produces a parallelogram with the origin being a vertex (not centered case):
# > $M = new Matrix([[1,1,0],[1,1,1]]);
# > $p = zonotope($M,centered=>0);
# > print $p->VERTICES;
# | 1 1 0
# | 1 0 0
# | 1 1 1
# | 1 2 1
user_function zonotope<Scalar> (Matrix<Scalar>, { rows_are_points => 1, centered => 1 }) {
my ($M, $options) = @_;
my $z = new Polytope<Scalar>(ZONOTOPE_INPUT_POINTS => ($options->{"rows_are_points"} ? $M : ones_vector<Scalar>() | $M),
CENTERED_ZONOTOPE => $options->{"centered"});
$z->description = "Zonotope generated by input " . ($options->{"rows_are_points"} ? "points" : "vectors");
return $z;
}
# @category Producing a polytope from polytopes
# Orthogonally project a pointed polyhedron to a coordinate subspace.
#
# The subspace the polyhedron //P// is projected on is given by indices in the set //indices//.
# The option //revert// inverts the coordinate list.
# The client scans for all coordinate sections and produces proper output from each.
# If a description in terms of inequalities is found, the client performs Fourier-Motzkin elimination
# unless the //nofm// option is set. Setting the //nofm// option is useful if the corank of the projection
# is large; in this case the number of inequalities produced grows quickly.
# @param Cone P
# @param Array<Int> indices
# @option Bool revert inverts the coordinate list
# @option Bool nofm suppresses Fourier-Motzkin elimination
# @return Cone
# @example [prefer cdd] [require bundled:cdd] project the 3-cube along the first coordinate, i.e. to the subspace
# spanned by the second and third coordinate:
# > $p = projection(cube(3),[1],revert=>1);
# > print $p->VERTICES;
# | 1 1 -1
# | 1 1 1
# | 1 -1 1
# | 1 -1 -1
user_function projection<Scalar>(Cone<Scalar>; $=[ ], { revert=>0, nofm=>0 }) {
my ($P, $indices, $options) = @_;
projection_cone_impl<Scalar>($P, $indices, $options);
}
# @category Producing a polytope from polytopes
# Orthogonally project a polyhedron to a coordinate subspace such that redundant columns are omitted,
# i.e., the projection becomes full-dimensional without changing the combinatorial type.
# The client scans for all coordinate sections and produces proper output from each.
# If a description in terms of inequalities is found, the client performs Fourier-Motzkin elimination
# unless the //nofm// option is set. Setting the //nofm// option is useful if the corank of the projection
# is large; in this case the number of inequalities produced grows quickly.
# @param Cone P
# @option Bool nofm suppresses Fourier-Motzkin elimination
# @option Bool no_labels Do not copy [[VERTEX_LABELS]] to the projection. default: 0
# @return Cone
user_function project_full<Scalar>(Cone<Scalar>; {nofm => 0, no_labels=>0}) {
projection(@_);
}
# @category Producing a polytope from polytopes
# Construct a new polyhedron that projects to a given array of polyhedra.
# If the n polyhedra are d_1, d_2, ..., d_n-dimensional and all have m vertices,
# the resulting polyhedron is (d_1+...+d_n)-dimensional, has m vertices, and
# the projection to the i-th d_i coordinates gives the i-th input polyhedron.
# @param Array<Cone> P_Array
# @return Cone
# @example
# > $p = projection_preimage(cube(2),cube(2));
# > print $p->VERTICES;
# | 1 -1 -1 -1 -1
# | 1 1 -1 1 -1
# | 1 -1 1 -1 1
# | 1 1 1 1 1
user_function projection_preimage<Scalar>(Cone<Scalar> +) {
my $a = new Array<Cone<Scalar>>(@_);
projection_preimage_impl($a);
}
# @category Producing a polytope from polytopes
# Construct a new polyhedron as the free sum of two given bounded ones.
# @param Polytope P1
# @param Polytope P2
# @option Bool force_centered if the input polytopes must be centered. Defaults to true.
# @option Bool no_coordinates produces a pure combinatorial description. Defaults to false.
# @return Polytope
# @example
# > $p = free_sum(cube(2),cube(2));
# > print $p->VERTICES;
# | 1 -1 -1 0 0
# | 1 1 -1 0 0
# | 1 -1 1 0 0
# | 1 1 1 0 0
# | 1 0 0 -1 -1
# | 1 0 0 1 -1
# | 1 0 0 -1 1
# | 1 0 0 1 1
user_function free_sum<Scalar>(Cone<Scalar> Cone<Scalar>; { force_centered=>1, no_coordinates=>0 }) {
my ($P1, $P2, $options) = @_;
if (!$P1->isa("Polytope") && $P2->isa("Polytope") ||
!$P2->isa("Polytope") && $P1->isa("Polytope")) {
die "free_sum: cannot mix cones and polytopes";
}
my $first_coord = ($P1->isa("Polytope") ? 1 : 0);
free_sum_impl($P1, $P2, "CONE", "LINEAR_SPAN", $first_coord, $options);
}
# @category Producing a polytope from polytopes
# Decompose a given polytope into the free sum of smaller ones
# @param Polytope P
# @return Array<Polytope>
user_function free_sum_decomposition<Scalar>(Polytope<Scalar>) {
my ($p) = @_;
my $indices = free_sum_decomposition_indices($p);
my $summands = new Array<Polytope<Scalar>>($indices->size());
foreach my $i (0..$indices->size()-1) {
my $q = new Polytope<Scalar>(VERTICES=>$p->VERTICES->minor($indices->[$i], All), N_VERTICES=>$indices->[$i]->size(), CENTERED=>1);
$summands->[$i] = $q;
}
return $summands;
}
# @category Producing a cone
# Computes the normal cone of //p// at a face //F// (or a vertex //v//).
# By default this is the inner normal cone.
# @param Cone p
# @param Set<Int> F (or Int v) vertex indices which are not contained in the far face
# @option Bool outer Calculate outer normal cone? Default value is 0 (= inner)
# @option Bool attach Attach the cone to //F//? Default 0 (ie, return the cone inside the hyperplane at infinity)
# @return Cone
# @example To compute the outer normal cone at a vertex of the 3-cube, do this:
# > $c = normal_cone(cube(3), 0, outer=>1);
# > print $c->RAYS;
# | -1 0 0
# | 0 -1 0
# | 0 0 -1
# @example To compute the outer normal cone along an edge of the 3-cube, do this:
# > print normal_cone(cube(3), [0,1], outer=>1)->RAYS;
# | 0 -1 0
# | 0 0 -1
# @example If you want to attach the cone to the polytope, specify the corresponding option:
# > print normal_cone(cube(3), [0,1], outer=>1, attach=>1)->RAYS;
# | 1 -1 -1 -1
# | 1 1 -1 -1
# | 0 0 -1 0
# | 0 0 0 -1
user_function normal_cone<Scalar>(Cone<Scalar> $; { outer => 0, attach => 0 }) {
my ($c, $F, $options) = @_;
if ($F =~ /^\d+/ || ref($F) == "ARRAY") {
$F = new Set($F);
}
return normal_cone_impl<Scalar>($c, $F, "FACETS_THRU_RAYS", "RAYS", "FACETS", $options);
}
# @category Producing a cone
# Computes the inner cone of //p// at a face //F// (or a vertex //v//).
# @param Cone p
# @param Set<Int> F (or Int v) vertex indices which are not contained in the far face
# @option Bool outer Make it point outside the polytope? Default value is 0 (= point inside)
# @option Bool attach Attach the cone to //F//? Default 0 (ie, return the cone inside the hyperplane at infinity)
# @return Cone
# @example To compute the inner cone at a vertex of the 3-cube, do this:
# > $c = inner_cone(cube(3), 1);
# > print $c->RAYS;
# | -1 0 0
# | 0 1 0
# | 0 0 1
# @example [nocompare] To compute the inner cone along an edge of the 3-cube, and make it point outside the polytope, do this:
# > print inner_cone(cube(3), [0,1], outer=>1)->RAYS;
# | 0 0 -1
# | 0 -1 0
# @example If you want to attach the cone to the polytope, specify the corresponding option:
# > print normal_cone(cube(3), [0,1], attach=>1)->RAYS;
# | 1 -1 -1 -1
# | 1 1 -1 -1
# | 0 0 1 0
# | 0 0 0 1
user_function inner_cone<Scalar>(Cone<Scalar> $; { outer => 0, attach => 0 }) {
my ($c, $F, $options) = @_;
if ($F =~ /^\d+/ || ref($F) == "ARRAY") {
$F = new Set($F);
}
return inner_cone_impl<Scalar>($c, $F, $options);
}
# @category Geometry
# For a face //F// of a cone or polytope //P//, return the polyhedral cone //C// such that
# taking the convex hull of //P// and any point in //C// destroys the face //F//
# @param Cone P
# @param Set F
# @return Cone
# @example To find the occluding cone of an edge of the 3-cube, type
# > $c=occluding_cone(cube(3), [0,1]);
# > print $c->FACETS;
# | -1 0 -1 0
# | -1 0 0 -1
user_function occluding_cone<Scalar>(Cone<Scalar> $) {
my ($c, $face, $options) = @_;
if ($face =~ /^\d+/ || ref($face) == "ARRAY") {
$face = new Set($face);
}
my $F = $c->FACETS;
my $ls = $c->LINEAR_SPAN;
my $vif = $c->RAYS_IN_FACETS;
my @occluding_facets;
for (0..$F->rows-1) {
if (incl($face, $vif->[$_]) <= 0) {
push @occluding_facets, $_;
}
}
if (scalar @occluding_facets == 0) {
croak("The set $face does not index a face of the input polytope or cone");
}
my $ineqs = -$F->minor(\@occluding_facets, All);
return new Cone<Scalar>(INEQUALITIES=>$ineqs, EQUATIONS=>$ls, CONE_AMBIENT_DIM=>$F->cols);
}
# @category Combinatorics
# Calculate the codegree of a cone or polytope P.
# This is the maximal positive integer c such that every subset of size < c lies in a common facet of conv P.
# Moreover, the relation degree(P) + codegree(P) = dim(P) + 1 holds.
# @param Cone P
# @tparam Scalar the underlying number type,
# @example To find the codegree of the 3-cube, type
# > print codegree(cube(3));
# | 1
user_function codegree<Scalar>(Cone<Scalar>) {
my $p = shift;
return codegree_impl($p->COMBINATORIAL_DIM, $p->RAYS_IN_FACETS);
}
# @category Combinatorics
# Calculate the codegree of a point configuration P.
# This is the maximal positive integer c such that every subset of size < c lies in a common facet of conv P.
# Moreover, the relation degree(P) + codegree(P) = dim(P) + 1 holds.
# @param PointConfiguration P
# @tparam Scalar the underlying number type,
user_function codegree<Scalar>(PointConfiguration<Scalar>) {
my $p = shift;
return codegree_impl($p->CONVEX_HULL->COMBINATORIAL_DIM, $p->CONVEX_HULL->POINTS_IN_FACETS);
}
# @category Combinatorics
# Calculate the degree of a cone, polytope or point configuration P.
# This is the maximal dimension of an interior face of P,
# where an interior face is a subset of the points of P whose convex hull does not lie on the boundary of P.
# Moreover, the relation degree(P) + codegree(P) = dim(P) + 1 holds.
# @param PointConfiguration P (or Cone or Polytope)
# @tparam Scalar the underlying number type,
# @example To find the degree of the 3-cube, type
# > print degree(cube(3));
# | 3
user_function degree($) {
my $p = shift;
my $d = $p->isa("PointConfiguration") ? $p->CONVEX_HULL->COMBINATORIAL_DIM : $p->COMBINATORIAL_DIM;
my $pif = $p->isa("PointConfiguration") ? $p->CONVEX_HULL->POINTS_IN_FACETS : $p->RAYS_IN_FACETS;
return $d + 1 - codegree_impl($d, $pif);
}
# Local Variables:
# cperl-indent-level:3
# mode: perl
# End:
|