File: polynomial_types

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (689 lines) | stat: -rw-r--r-- 24,376 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
#  Copyright (c) 1997-2024
#  Ewgenij Gawrilow, Michael Joswig, and the polymake team
#  Technische Universität Berlin, Germany
#  https://polymake.org
#
#  This program is free software; you can redistribute it and/or modify it
#  under the terms of the GNU General Public License as published by the
#  Free Software Foundation; either version 2, or (at your option) any
#  later version: http://www.gnu.org/licenses/gpl.txt.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#-------------------------------------------------------------------------------

# persisted polynomial variable names by package
custom %polynomial_var_names=();

function polynomial_type($) { undef }

# @category Algebraic Types
# @tparam Coefficient default: [[Rational]]
# @tparam Exponent default: [[Int]]
declare property_type Polynomial<Coefficient=Rational, Exponent=Int> \
   : upgrades(Coefficient) : c++ (include => "polymake/Polynomial.h", default_constructor => 'Deserializing') {

   method construct(Int) : c++;

   # coefficients as vector, exponents as sparse matrix =>
   method construct(*,*) : c++;

   type_method parse { &parse_polynomial }

   # with explicitly given number of variables
   method construct(String, Int) { &parse_polynomial; }

   operator neg @arith ^ ^= @compare : c++;

   method pow(*) : operator ** : c++;

   # The degree of the polynomial
   # @return Int
   user_method deg() : c++;

   # Check if the polynomial is homogeneous
   # @return Bool
   user_method homogeneous() : c++;

   # The exponent of the leading monomial.
   # @return Int
   user_method lm() : c++;

   # The __leading coefficient__.
   # @return Int
   user_method lc() : c++;

   # The __constant coefficient__.
   # @return Int
   user_method constant_coefficient() : c++;
   
   # Print a polynomial with terms sorted according to a given [[Matrix]] //m//.
   # @param Matrix m
   user_method print_ordered(Matrix<Exponent>) : c++;

   # The initial form with respect to a weight-vector //v//
   # @param Vector<Exponent> v weights
   # @return Polynomial
   user_method initial_form(Vector<Exponent>) : c++;

   # The matrix of all exponent vectors (row-wise).
   # The sorting agrees with [[coefficients_as_vector]].
   # @return SparseMatrix<Exponent>
   user_method monomials_as_matrix() : c++;

   # Number of variables
   # @return Int
   user_method n_vars() : c++;

   # The polynomial is zero.
   # @return Bool
   user_method trivial() : c++;

   # The vector of all coefficients.
   # The sorting agrees with [[monomials_as_matrix]].
   # @return Vector<Coefficient>
   user_method coefficients_as_vector() : c++;

   # Substitute a list of values in a [[Polynomial]] with [[Int]] exponents.
   # Either with an array of values, or with a [[Map]] mapping variable indices
   # to values.
   # @example
   # > $pm = new Polynomial("1+x_0^2*x_3+x_1+3*x_3");
   # > print $pm->substitute([0,11,2,3]);
   # | 21
   # > $map = new Map<Int,Rational>([0,5/2],[1,1/5],[2,new Rational(7/3)]);
   # > print $pm->substitute($map);
   # | 37/4*x_3 + 6/5
   user_method substitute(*) : c++;

   # Project the [[Polynomial]] to the given list of variables.
   # The number of variables will be reduced to the number of indices,
   # i.e. the variables will be renamed.
   # Keeping the names of the variables is possible by using [[substitute]]
   # with a [[Map]].
   # @return Polynomial
   # @example
   # > $pm = new Polynomial("1+x_0^2*x_3+x_1+3*x_3");
   # > print $pm->project([1,3]);
   # | x_0 + 4*x_1 + 1
   user_method project(*) : c++;

   # Map the variables of the [[Polynomial]] to the given indices.
   # The same index may bei given multiple times and also some may be omitted
   # for embedding with a higher number of variables.
   # The length of the given [[Array]] must be the same as the number of variables
   # of the original polynomial.
   # @param Array<Int> indices indices of the target variables
   # @param Int nvars new number of variables, default: maximal index
   # @return Polynomial
   # @example
   # > $pm = new Polynomial("1+x_0^2*x_3+x_1+3*x_3");
   # > print $pm->mapvars([0,1,1,4],6);
   # | x_0^2*x_4 + x_1 + 3*x_4 + 1
   user_method mapvars(*;$=-1) : c++;

   # Embed the [[Polynomial]] in a polynomial ring with the given
   # number of variables.
   # The old variables will be put at the beginning, for more control use [[mapvars]].
   # @param Int nvars new number of variables
   # @return Polynomial
   # @example
   # > $pm = new Polynomial("1+x_0^2*x_3+x_1+3*x_3");
   # > print $pm->project([1,3]);
   # | x_0 + 4*x_1 + 1
   user_method embed($) {
      my ($this, $n) = @_;
      croak("embed: number of variables must be at least the current n_vars")
         if ($n < $this->n_vars);
      return $this->mapvars(sequence(0,$this->n_vars),$n);
   }

   # construct a monomial of degree 1 with a given variable
   # @param Int var_index index of the variable
   # @param Int n_vars number of variables
   user_method monomial(:static, Int, Int) : c++;

   # set the variable names
   user_method get_var_names(:static) : c++;

   # set the variable names
   user_method set_var_names(:static, $) : c++;

   # reset the variable names according to the default naming scheme
   user_method reset_var_names(:static) : c++;

   type_method init {
      my ($proto) = @_;
      if (defined(my $names = $polynomial_var_names{$proto->pkg})) {
         set_var_names($proto, $names);
      }
   }
}

function polynomial_type(Polynomial) { $_[0]->type }

# @category Algebraic Types
# A class for __univariate__ polynomials.
# @tparam Coefficient default: [[Rational]]
# @tparam Exponent default: [[Int]]
declare property_type UniPolynomial<Coefficient=Rational, Exponent=Int> \
   : upgrades(Coefficient) : c++ (include => "polymake/RationalFunction.h") {

   method construct(type_upgrades_to<Coefficient>) : c++;

   # coefficients, exponents =>
   method construct(*,*) : c++;

   type_method parse { &parse_polynomial }

   operator neg @arith ^ ^= % %= @compare : c++;

   method pow(*) : operator ** : c++;

   # The highest degree occurring in the polynomial.
   # @return Exponent
   user_method deg() : c++;

   # The lowest degree occurring in the polynomial.
   # @return Exponent
   user_method lower_deg() : c++;

   # The __leading coefficient__.
   # @return Int
   user_method lc() : c++;

   # The __constant coefficient__.
   # @return Int
   user_method constant_coefficient() : c++;
   
   # Number of variables
   user_method n_vars() {
      return 1;
   }

   # Print a polynomial with terms sorted according to //exponent*x//.
   # @param Exponent x
   user_method print_ordered($) : c++;

   # Approximate evaluation of the polynomial at a [[Float]] //x//.
   # @param Float x
   # @return Float
   user_method evaluate_float($) : c++;

   # Evaluate a [[UniPolynomial]] at a number (//x^exp//).
   # Note that for non-integral exponents this may require intermediate floating point
   # computations depending on the input:
   # Let //explcm// be the lcm of the denominators of all exponents.
   # If there are no denominators or //explcm// divides //exp//, then the evaluation
   # is computed exactly.
   # Otherwise, some rational number close to the root //(x^exp)^-explcm// will be chosen
   # via an intermediate floating point number.
   # @param Coefficient x
   # @param Exponent exp (default: 1)
   # @return Coefficient
   user_method evaluate(*;$=1) : c++;

   # Substitute some //value// in a [[UniPolynomial]] with [[Int]] exponents.
   # When all exponents are positive the argument can be any scalar, matrix or polynomial type.
   # With negative exponents, polynomials are not supported (use [[RationalFunction]] instead)
   # and any given matrix must be invertible
   user_method substitute(*) : c++;

   # The vector of all coefficients.
   # The sorting agrees with [[monomials_as_vector]].
   # @return Vector<Coefficient>
   user_method coefficients_as_vector() : c++;

   # The vector of all exponents.
   # The order agrees with [[coefficients_as_vector]].
   # @return Vector<Exponent>
   user_method monomials_as_vector() : c++;

   # create a monomial of degree 1
   user_method monomial(:static) : c++;

   # get the variable name
   user_method get_var_names(:static) : c++;

   # set the variable name
   user_method set_var_names(:static, $) : c++;

   # reset the variable name according to the default naming scheme
   user_method reset_var_names(:static) : c++;

   type_method init {
      my ($proto) = @_;
      if (defined(my $names = $polynomial_var_names{$proto->pkg})) {
         set_var_names($proto, $names);
      }
   }
}

function polynomial_type(UniPolynomial) { $_[0]->type }

# @category Data Conversion
# Explicit conversion to a different coefficient type.
# @param Polynomial m
# @tparam Target
# @return Polynomial<Target>

user_function convert_to<Coefficient>(Polynomial) : c++ {
   if ($_[0]->type->params->[0]==typeof Coefficient) {
      return $_[0];
   }
}

# @category Data Conversion
# Explicit conversion to a different coefficient type.
# @param UniPolynomial m
# @tparam Target
# @return UniPolynomial<Target>
user_function convert_to<Coefficient>(UniPolynomial) : c++ {
   if ($_[0]->type->params->[0]==typeof Coefficient) {
      return $_[0];
   }
}




# @category Arithmetic
# Get the current list of variable names used for pretty printing and string parsing of the given polynomial class
# @return Array<String>

user_function get_var_names<PolynomialType>[ polynomial_type(PolynomialType) ]() {
   polynomial_type(typeof PolynomialType)->pkg->get_var_names;
}


# @category Arithmetic
# Set the list of variable names used for pretty printing and string parsing of the given polynomial class
#
# When the number of variables in a polynomial is greater than the size of the name list, the excess variable names
# are produced from a template "${last_var_name}_{EXCESS}", where EXCESS starts at 0 for the variable corresponding
# to the last name in the list.  If the last name already has a form "{Name}_{Number}", the following variables are enumerated
# starting from that Number plus 1.
#
# The default naming scheme consists of a single letter "x", "y", "z", "u", "v", or "w" chosen according to the nesting depth
# of polynomial types in the coefficient type.  That is, variables of simple polynomials (those with pure numerical coefficients)
# are named x_0, x_1, ..., variables of polynomials with simple polynomial coefficients are named y_0, y_1, etc.
#
# @param String names ... variable names; may also be bundled in an array
#                         an empty list resets to the default naming scheme

user_function set_var_names<PolynomialType>[ polynomial_type(PolynomialType) ](@) {
   my $pkg = polynomial_type(typeof PolynomialType)->pkg;

   if (@_ == 0) {
      delete $polynomial_var_names{$pkg};
      $pkg->reset_var_names;
      return;
   }
   my $names = prepare_var_names(@_, $pkg);
   $polynomial_var_names{$pkg} = $names;
   $pkg->set_var_names($names);
}

package VarNameSaver;
use Polymake::Struct(
   [ new => '$@' ],
   [ '$pkg' => '#1' ],
   [ '@names' => '@' ],
);

sub DESTROY {
   my ($self)=@_;
   if (@{$self->names}) {
      $self->pkg->set_var_names($self->names);
   } else {
      $self->pkg->reset_var_names;
   }
}

package application;
my $var_name_saver;

# @category Arithmetic
# Set the list of variable names for given polynomial class temporarily.
# The existing name list or the default scheme is restored at the end of the current user cycle,
# similarly to [[prefer_now]].
# @param String names ... variable names, see [[set_var_names]].

user_function local_var_names<PolynomialType>[ polynomial_type(PolynomialType) ](@) {
   my $pkg = polynomial_type(typeof PolynomialType)->pkg;
   my $names = prepare_var_names(@_, $pkg);
   local with($Scope->locals) {
      local scalar $var_name_saver = new VarNameSaver($pkg, exists $polynomial_var_names{$pkg} ? @{ $pkg->get_var_names } : ());
      local $polynomial_var_names{$pkg} = $names;
   }
   if (@$names) {
      $pkg->set_var_names($names);
   } else {
      $pkg->reset_var_names;
   }
}

sub prepare_var_names {
   my $pkg=pop;

   my $names;
   if (@_>1 || is_string($_[0])) {
      $names=[ @_ ];
   } else {
      $names=shift;
   }

   if (instanceof Polynomial($pkg)) {
      # sanity checks for duplicates and conflicts with the trailing pattern
      my %seen;
      my $excess_pattern=qr/^$names->[-1]_\d+$/;
      my $cnt=@$names;
      foreach (@$names) {
         /^($id_re)(?<!_)$/o or croak( "invalid variable name $_: must be an ID without trailing underscore" );
         $seen{$_}++ and croak( "duplicate variable name $_" );
         --$cnt && /$excess_pattern/ and croak( "variable name $_ conflicts with the trailing name pattern" );
      }
   } elsif (@$names != 1) {
      croak( "more than one variable name specified for a univariate polynomial class" );
   }
   $names
}


# @category Arithmetic
# Create degree one monomials of the desired polynomial type.
# @param Int n The number of variables
# @tparam Coefficient The polynomial coefficient type. Rational by default.
# @tparam Exponent The exponent type. Int by default.
# @return UniPolynomial<Coefficient,Exponent> when //n// == 1, Polynomial<Coefficient,Exponent> when //n// > 1
user_function monomials<Coefficient=Rational, Exponent=Int>($) {
   my ($n)=@_;
   if ($n <= 0) {
      croak("Number of variables needs to be at least 1");
   } elsif ($n == 1) {
      (typeof UniPolynomial<Coefficient, Exponent>)->pkg->monomial;
   } else {
      my $p=typeof Polynomial<Coefficient, Exponent>;
      map { $p->pkg->monomial($_, $n) } (0 .. $n-1);
   }
}


# Parse a polynomial-like expression and produce a Polynomial or UniPolynomial object of the desired type.
#
# All ID-like names occurring in the string are interpreted as variable names; they must match the current
# variable name lists establshed for the polynomial type itself and, recursively, its coefficient type(s)
#
# The following syntactical sloppiness is allowed:
#   - omitted multiplication operator '*' is inserted in subexpressions like "5x", "5 x", "x y", "x (u-w)" etc.
#   - omitted power operator '**' is inserted in subexpressions like "x5", "x 5", "(x+y)2" etc.
#   - alternative power operator '^' is assumed to bind stronger than multiplicative operators, unlike in C++ or perl
#   - free term given as a numeric literal is converted to the coefficient type even when the implicit conversion
#     in general is not allowed, like for [[TropicalNumber]].

sub parse_polynomial {
   my ($proto, $string, $prescribed_num_vars)=@_;

   # first, descend through coefficient types and collect all variable names;
   # no conflicts should arise
   my (%all_varnames, %patterns, @num_vars, @monoms);
   do {
      my $layer=@num_vars;
      my $varnames=get_var_names<$proto>();
      my $index=0;
      foreach (@$varnames) {
         ($all_varnames{$_} &&= croak( "variable name $_ occur in different polynomial types, unambiguous parsing not possible" )) //= [ $layer, $index ];
      } continue { ++$index }

      if (instanceof Polynomial($proto->pkg)) {
         $patterns{$varnames->[-1]}=[ $layer, $index-1 ];
      }
      push @num_vars, [ $proto, 0 ];

      $proto=$proto->params->[0];
   } while (polynomial_type($proto));

   # recognize agglutinated monomials like x5y3 if they do not occur as variable names on their own
   pos($string)=0;
   while ($string =~ /\G .*? (([a-zA-Z]+)(\d+)(?:$id_re)?)/gxo) {
      if (!exists $all_varnames{$1}) {
         my ($monomial, $added);
         if (exists $all_varnames{"$2$3"}) {
            $monomial="$2$3 ";
            $added=1;
         } elsif (exists $all_varnames{$2}) {
            $monomial="$2**$3";
            $added=2;
         }
         if ($added) {
            substr($string, $-[2], $+[3]-$-[2])=$monomial;
            pos($string)=$+[3]+$added;
         }
      }
   }
   # insert omitted * and ** operators
   $string =~ s{(?: [\w\)]) \s* \K (?= [a-zA-Z\(])}{*}gx;
   $string =~ s{(?: [a-zA-Z\)]) \s* \K (?= \d)}{**}gx;

   # replace ^ with ** because of preference rules, embrace rational exponents
   $string =~ s{\^}{**}g;
   $string =~ s{\*\*\s* \K (-?\d+/\d+)}{($1)}gx;

   # replace every ID-like word with a reference to @monoms, update the number of variables
   $string =~ s{$id_re}{
      my $name=$&;
      my ($layer, $index);
      if (defined (my $var=$all_varnames{$name})) {
         ($layer, $index)=@$var;
      } elsif ($name =~ /_(\d+)$/ && defined ($var=$patterns{$`})) {
         ($layer, $index)=@$var;
         $index+=$1;
      } else {
         croak( "invalid variable name $name" );
      }
      if ($layer==0 && defined($prescribed_num_vars) && $index >= $prescribed_num_vars) {
         croak( "variable $name exceeds the prescribed number of variables for type ", $num_vars[$layer]->[0]->full_name );
      }
      assign_max($num_vars[$layer]->[1], $index+1);
      "\$monoms[$layer]->[$index]"
   }goe;

   # create the monomials
   if (defined($prescribed_num_vars) && $num_vars[0]->[1] > 0) {
      $num_vars[0]->[1]=$prescribed_num_vars;
   }
   @monoms=map { my @coeff_exp_types=@{$_->[0]->params}; $_->[1]>0 ? [ monomials<@coeff_exp_types>($_->[1]) ] : undef } @num_vars;

   # recognize the constant free term and insert the explicit constructor call if the coeffificient type
   my $simplest_coeff_type=$num_vars[-1]->[0]->params->[0];
   if ($simplest_coeff_type->upgrades->{typeof Rational} > 0) {
      $string =~ s{(?: [-+] | ^ ) \s* \K (\d+ (?:/\d+)?) (?= \s* (?: [-+] | $))}
                  {\$simplest_coeff_type->construct->($1)}xsg;
   }

   # now the string should contain a valid perl expression and can be evaluated directly
   my $result=eval $string;
   die $@ if $@;

   defined($monoms[0])
     ? # the expression contains monomials of the target type
       $result
     : # the expression is a coefficient of the degree zero monomial
       $_[0]->construct->($result, defined($prescribed_num_vars) ? $prescribed_num_vars : ());
}


# @category Arithmetic
# Returns the __greatest common divisor__ of two univariate polynomials.
# @param UniPolynomial p
# @param UniPolynomial q
# @return UniPolynomial
# @example We create two UniPolynomials with said coefficient and exponent type:
# > $p = new UniPolynomial<Rational,Int>([2,2],[3,2]);
# > $q = new UniPolynomial<Rational,Int>([6,4],[4,2]);
# Printing them reveals what the constructor does:
# > print $p;
# | 2*x^3 + 2*x^2
# > print $q;
# | 6*x^4 + 4*x^2
# Now we can calculate their gcd:
# > print gcd($p,$q);
# | x^2

user_function gcd(UniPolynomial, UniPolynomial) : c++;


# @category Algebraic Types
# @tparam Coefficient default: [[Rational]]
# @tparam Exponent default: [[Int]]
declare property_type RationalFunction<Coefficient=Rational, Exponent=Int> \
   : upgrades( UniPolynomial<Coefficient, Exponent> ) : c++ (include => "polymake/RationalFunction.h") {

   method construct() : c++;

   method construct(type_upgrades_to<Coefficient>) : c++;

   method construct(*,*) : c++;

   operator neg @arith @eq : c++;
}

function polynomial_type<Coefficient, Exponent>(RationalFunction<Coefficient, Exponent>) { typeof UniPolynomial<Coefficient, Exponent> }

# @category Arithmetic
# Returns the __numerator__ of a [[RationalFunction]] //f//.
# @param RationalFunction f
# @return Polynomial
user_function numerator(RationalFunction:anchor) : c++;

# @category Arithmetic
# Returns the __denominator__ of a [[RationalFunction]] //f//.
# @param RationalFunction f
# @return Polynomial
user_function denominator(RationalFunction:anchor) : c++;


# @category Algebraic Types
# @tparam MinMax type of tropical addition: either [[Min]] or [[Max]]
# @tparam Coefficient default: [[Rational]]
# @tparam Exponent default: [[Rational]]
declare property_type PuiseuxFraction<MinMax, Coefficient=Rational, Exponent=Rational> \
   : upgrades( Coefficient ) : c++ (include => "polymake/PuiseuxFraction.h") {

   method construct(type_upgrades_to< RationalFunction<Coefficient,Exponent> >) : c++;

   method construct(type_upgrades_to< UniPolynomial<Coefficient,Exponent> >, type_upgrades_to< UniPolynomial<Coefficient,Exponent> >) : c++;

   operator neg @arith @compare : c++;

   # The __valuation__.
   # @return TropicalNumber<MinMax>
   # @example
   # > $x = monomials<Rational,Rational>(1);
   # > print new PuiseuxFraction<Max>(2*$x*$x-$x+2)->val;
   # | 2
   # @example [application polytope]
   # The valuation can also be applied to Containers via convert_to
   # > $m = long_and_winding(3)->FACETS;
   # > print convert_to<TropicalNumber<Max>>($m);
   # | (7) (0 2) (1 0)
   # | (7) (0 1) (2 0)
   # | (7) (1 1) (3 0)
   # | (7) (2 1) (3 0)
   # | (7) (1 1/2) (2 1/2) (4 0)
   # | (7) (3 1) (5 0)
   # | (7) (4 1) (5 0)
   # | (7) (3 3/4) (4 3/4) (6 0)
   # | (7) (5 0)
   # | (7) (6 0)
   user_method val() : c++;
}

# Evaluate a [[PuiseuxFraction]] at a [[Rational]] number (//x^exp//).
# Let //explcm// be the lcm of the denominators of all exponents.
# If there are no denominators or //explcm// divides //exp//, then the evaluation
# is computed exactly.
# Otherwise, some rational number close to the root //(x^exp)^-explcm// will be chosen
# via an intermediate floating point number.
# @param PuiseuxFraction f
# @param __Coefficient__ x
# @param Int exp (default: 1)
# @return __Coefficient__
user_function evaluate(PuiseuxFraction, *; $=1) : c++;

# Evaluate all [[PuiseuxFraction]]s in a [[Matrix]] at a [[Rational]] number (//x^exp//).
# Let //explcm// be the lcm of the denominators of all exponents.
# If there are no denominators or //explcm// divides //exp//, then the evaluation
# is computed exactly.
# Otherwise, some rational number close to the root //(x^exp)^-explcm// will be chosen
# via an intermediate floating point number.
# @param Matrix m
# @param Coefficient x
# @param Int exp (default: 1)
# @return Matrix<Coefficient>
# @example [application polytope]
# > $m = long_and_winding(2)->FACETS;
# > print evaluate($m,2,4);
# | (5) (0 256) (1 -1)
# | (5) (0 16) (2 -1)
# | (5) (1 16) (3 -1)
# | (5) (2 16) (3 -1)
# | 0 4 4 0 -1
# | (5) (3 1)
# | (5) (4 1)
user_function evaluate<Coefficient=_, Exponent=_>(Matrix<PuiseuxFraction<Coefficient, Exponent>>, *; $=1) : c++;

# Evaluate all [[PuiseuxFraction]]s in a [[Vector]] at a [[Rational]] number (//x^exp//).
# Let //explcm// be the lcm of the denominators of all exponents.
# If there are no denominators or //explcm// divides //exp//, then the evaluation
# is computed exactly.
# Otherwise, some rational number close to the root //(x^exp)^-explcm// will be chosen
# via an intermediate floating point number.
# @param Vector v
# @param Coefficient x
# @param Int exp (default: 1)
# @return Vector<Coefficient>
user_function evaluate<Coefficient=_, Exponent=_>(Vector<PuiseuxFraction<Coefficient, Exponent>>, *; $=1) : c++;

# Approximate evaluation at //x//
# @param PuiseuxFraction f
# @param Float x
# @return Float
user_function evaluate_float(PuiseuxFraction, $) : c++;

# Approximate evaluation of a [[Matrix]] at //x//
# @param Matrix m
# @param Float x
# @return Float
user_function evaluate_float<Coefficient=_, Exponent=_>(Matrix<PuiseuxFraction<Coefficient, Exponent>>, *) : c++;

# Approximate evaluation of a [[Vector]] at //x//
# @param Vector v
# @param Float x
# @return Float
user_function evaluate_float<Coefficient=_, Exponent=_>(Vector<PuiseuxFraction<Coefficient, Exponent>>, *) : c++;

function polynomial_type<Coefficient, Exponent>(PuiseuxFraction<Coefficient, Exponent>) { typeof UniPolynomial<Coefficient, Exponent> }

function is_ordered_field_with_unlimited_precision(PuiseuxFraction) { 1 }

# @category Arithmetic
# Returns the __numerator__ of a [[PuiseuxFraction]] //f//.
# @param PuiseuxFraction f
# @return Polynomial
user_function numerator(PuiseuxFraction:anchor) : c++;

# @category Arithmetic
# Returns the __denominator__ of a [[PuiseuxFraction]] //f//.
# @param PuiseuxFraction f
# @return Polynomial
user_function denominator(PuiseuxFraction:anchor) : c++;


# Local Variables:
# mode: perl
# cperl-indent-level: 3
# indent-tabs-mode:nil
# End: