1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/client.h"
#include "polymake/Matrix.h"
#include "polymake/Map.h"
#include "polymake/Set.h"
#include "polymake/linalg.h"
#include "polymake/graph/Decoration.h"
#include "polymake/graph/Lattice.h"
#include "polymake/fan/hasse_diagram.h"
namespace polymake { namespace fan{
namespace compactification {
using graph::Lattice;
using namespace graph::lattice;
using namespace fan::lattice;
struct IteratorWrap {
FacetList groundSet;
FacetList::const_iterator state;
IteratorWrap(FacetList&& gs)
: groundSet(std::move(gs))
, state(groundSet.begin()) {}
Set<Int> operator*()
{
return *state;
}
IteratorWrap& operator++()
{
++state;
return *this;
}
bool at_end()
{
return state == groundSet.end();
}
};
template <typename DecorationType, typename Scalar>
class CellularClosureOperator {
private:
FaceMap<> face_index_map;
Map<Int, Set<Int>> int2vertices;
Map<Set<Int>, Int> vertices2int;
Int nVertices;
Set<Int> farVertices;
Matrix<Scalar> vertices;
Lattice<BasicDecoration, Nonsequential> oldHasseDiagram;
public:
typedef Set<Int> ClosureData;
CellularClosureOperator(BigObject pc)
{
pc.give("FAR_VERTICES") >> farVertices;
pc.give("VERTICES") >> vertices;
pc.give("HASSE_DIAGRAM") >> oldHasseDiagram;
nVertices = vertices.rows();
Set<Int> topNode{-1};
Int i = 0;
// Build new vertices
for (const auto& f : oldHasseDiagram.decoration()) {
if (f.face != topNode) {
Int faceDim = f.rank-1;
Int tailDim = rank(vertices.minor(f.face * farVertices, All));
if (faceDim == tailDim) {
int2vertices[i] = f.face;
vertices2int[f.face] = i;
++i;
}
}
}
}
Set<Int> old_closure(const Set<Int>& a) const
{
// We find a closure of a face in the old Hasse diagram by starting
// at the top node and then descending into lower nodes whenever
// they contain the given set of vertices. If no further descent is
// possible, we terminate.
Int currentNode = oldHasseDiagram.top_node();
const Graph<Directed>& G(oldHasseDiagram.graph());
bool found = true;
while (found) {
found = false;
for (const auto p : G.in_adjacent_nodes(currentNode)) {
const BasicDecoration& decor = oldHasseDiagram.decoration(p);
if (incl(a, decor.face) <= 0) {
found = true;
currentNode = p;
break;
}
}
}
return oldHasseDiagram.decoration(currentNode).face;
}
Set<Int> closure(const Set<Int>& a) const
{
Set<Int> originalRealisation;
for (const auto i : a) {
originalRealisation += int2vertices[i];
}
Set<Int> originalClosure = old_closure(originalRealisation);
Set<Int> commonRays = originalRealisation * farVertices;
for (const auto i : a) {
commonRays = commonRays * int2vertices[i];
}
Set<Int> result;
for (const auto& v : vertices2int) {
if (incl(commonRays, v.first) <= 0 && incl(v.first, originalClosure) <= 0) {
result += v.second;
}
}
return result;
}
Set<Int> closure_of_empty_set()
{
return Set<Int>{};
}
FaceIndexingData get_indexing_data(const ClosureData& data)
{
Int& fi = face_index_map[data];
return FaceIndexingData(fi, fi == -1, fi == -2);
}
Set<Int> compute_closure_data(const DecorationType& bd) const
{
return bd.face;
}
IteratorWrap get_closure_iterator(const Set<Int>& face) const
{
Set<Int> toadd = sequence(0, int2vertices.size())-face;
FacetList result;
for (auto i : toadd) {
result.insertMin(closure(face+i));
}
return IteratorWrap(std::move(result));
}
const Map<Int, Set<Int>>& get_int2vertices() const
{
return int2vertices;
}
const Set<Int>& get_farVertices() const
{
return farVertices;
}
};
struct SedentarityDecoration
: public GenericStruct<SedentarityDecoration> {
DeclSTRUCT( DeclFIELD(face, Set<Int>)
DeclFIELD(rank, Int)
DeclFIELD(realisation, Set<Int>)
DeclFIELD(sedentarity, Set<Int>) );
SedentarityDecoration() {}
SedentarityDecoration(const Set<Int>& f, Int r, const Set<Int>& re, const Set<Int>& se)
: face(f)
, rank(r)
, realisation(re)
, sedentarity(se) {}
};
class SedentarityDecorator {
private:
const Map<Int, Set<Int>>& int2vertices;
const Set<Int>& farVertices;
Set<Int> realisation(const Set<Int>& face) const
{
Set<Int> result;
for (const auto& e : face) {
result += int2vertices[e];
}
return result;
}
Set<Int> sedentarity(const Set<Int>& face) const
{
if (face.size() == 0) {
return Set<Int>{};
}
Set<Int> result(farVertices);
for (const auto& e:face){
result *= int2vertices[e];
}
return result;
}
public:
typedef SedentarityDecoration DecorationType;
SedentarityDecorator(const Map<Int, Set<Int>>& i2v, const Set<Int>& fv)
: int2vertices(i2v)
, farVertices(fv) {}
SedentarityDecoration compute_initial_decoration(const Set<Int>& face) const
{
return SedentarityDecoration(face, 0, realisation(face), sedentarity(face));
}
SedentarityDecoration compute_decoration(const Set<Int>& face, const SedentarityDecoration& bd) const
{
return SedentarityDecoration(face, bd.rank+1, realisation(face), sedentarity(face));
}
SedentarityDecoration compute_artificial_decoration(const NodeMap<Directed, SedentarityDecoration>& decor, const std::list<Int>& max_faces) const
{
const Set<Int> D{-1};
Int rank = 0;
for (const auto& mf : max_faces) {
assign_max(rank, decor[mf].rank);
}
++rank;
return SedentarityDecoration(D, rank, D, Set<Int>{});
}
};
} } }
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|