1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/polytope/face_lattice_tools.h"
namespace polymake { namespace fan { namespace face_lattice {
/// Compute the lattice of a tight span, starting always from the vertices of the tight span (dual)
/// the excluded faces are in primal form
template <typename TMatrix, typename DiagrammFiller>
void compute_tight_span(const GenericIncidenceMatrix<TMatrix>& VIF,
const Set<Set<Int>>& excluded_faces,
DiagrammFiller HD, Int dim_upper_bound=-1)
{
std::list<Set<Int>> Q; // queue of faces, which have been seen but who's faces above have not been computed yet.
FaceMap<> Faces;
// The bottom node: empty set
const Int C = VIF.cols();
HD.add_node(Set<Int>{});
HD.increase_dim();
Int end_this_dim = 0, end_next_dim = 0, d = 0, max_faces_cnt = 0;
// The first level: vertices.
const auto vertices = sequence(0, C);
if (C > 1) {
copy_range(entire(all_subsets_of_1(vertices)), std::back_inserter(Q));
Int n = HD.add_nodes(C, all_subsets_of_1(vertices).begin());
end_next_dim = end_this_dim = n+C;
HD.increase_dim(); ++d;
for (Int i = n; i < end_this_dim; ++i)
HD.add_edge(0, i);
if (dim_upper_bound != 0) {
for (;;) {
Set<Int> H = Q.front(); Q.pop_front();
bool is_max_face = true;
for (polytope::face_lattice::faces_one_above_iterator<Set<Int>, TMatrix> faces(H, VIF); !faces.at_end(); ++faces) {
Int& node_ref = Faces[polytope::face_lattice::c(faces->second, VIF)];
if (node_ref == -1) {
bool excluded = false;
for (auto f = entire(excluded_faces); !f.at_end() ; ++f)
if (incl(faces->first, *f) < 1) {
excluded = true;
break;
}
if (!excluded) {
node_ref = HD.add_node(faces->second);
Q.push_back(faces->second);
++end_next_dim;
} else {
node_ref = -2;
continue;
}
} else if (node_ref == -2) {
continue;
}
HD.add_edge(n, node_ref);
is_max_face = false;
}
if (is_max_face) ++max_faces_cnt;
if (++n == end_this_dim) {
if (__builtin_expect(Q.empty() || d == dim_upper_bound, 0)) break;
HD.increase_dim();
++d; end_this_dim=end_next_dim;
}
}
}
}
if (max_faces_cnt + end_next_dim-end_this_dim > 1) {
// The top node is connected to all inclusion-independent faces regardless of the dimension
const Int n = HD.add_node(vertices);
for (Int i = 0; i < n; ++i)
if (HD.graph().out_degree(i) == 0)
HD.add_edge(i, n);
}
}
} } }
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|