1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/PowerSet.h"
#include "polymake/graph/Closure.h"
#include "polymake/graph/Lattice.h"
#include "polymake/graph/BasicLatticeTypes.h"
#include "polymake/graph/lattice_builder.h"
#include "polymake/linalg.h"
namespace polymake { namespace fan {
// Certain constructions that are implemented for PolyhedralFan do not lift to
// PolyhedralComplex naturally. One such construction would be taking the
// k_skeleton: If the PolyhedralComplex has rays, then one might get cones that
// only live in the 0-plane, and hence do not contribute feasible polytopes.
// The other such construction that we know of is the common_refinement.
//
// This function eliminates the infeasible polytopes and afterwards also
// removes unused rays.
template<typename Scalar>
BigObject prune_polyhedral_complex(BigObject input){
BigObject result("PolyhedralComplex", mlist<Scalar>());
bool has_rays = input.exists("RAYS");
Matrix<Scalar> rays = has_rays ? input.give("RAYS") : input.give("INPUT_RAYS");
if(indices(attach_selector(rays.col(0), polymake::operations::negative())).size() != 0){
throw std::runtime_error("Input fan extends below height 0.");
}
IncidenceMatrix<NonSymmetric> cones = has_rays ? input.give("MAXIMAL_CONES") : input.give("INPUT_CONES");
Matrix<Scalar> lineality(0, rays.cols());
Int ldim = input.give("LINEALITY_DIM");
if(ldim > 0){
input.give("LINEALITY_SPACE | INPUT_LINEALITY") >> lineality;
if(indices(attach_selector(lineality.col(0), polymake::operations::non_zero())).size() != 0){
throw std::runtime_error("Input fan extends below height 0.");
}
}
Set<Int> far_vertices = far_points(rays);
if(far_vertices.size() != 0){
Set<Int> feasible_polytopes, used_rays;
for(Int i=0; i<cones.rows(); i++){
if(incl(cones.row(i), far_vertices) > 0){
used_rays += cones.row(i);
feasible_polytopes += i;
}
}
rays = rays.minor(used_rays, All);
cones = cones.minor(feasible_polytopes, used_rays);
}
if(has_rays){
result.take("VERTICES") << rays;
result.take("MAXIMAL_POLYTOPES") << cones;
result.take("LINEALITY_SPACE") << lineality;
} else {
result.take("POINTS") << rays;
result.take("INPUT_POLYTOPES") << cones;
result.take("INPUT_LINEALITY") << lineality;
}
return result;
}
} // namespace fan
} // namespace polymake
|