1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
object HyperplaneArrangement {
file_suffix hyar
# @category Geometry
# A matrix containing the hyperplanes of the arrangement as rows.
#
# @example The same hyperplane with opposing directions.
# > $HA = new HyperplaneArrangement(HYPERPLANES=>[[1,-1],[-1,1],[1,1]]);
# > print $HA->HYPERPLANES;
# | 1 -1
# | -1 1
# | 1 1
#
# @example A hyperplane that does not cut through the [[SUPPORT]]
# > $HA = new HyperplaneArrangement(HYPERPLANES=>[[1,1]], "SUPPORT.INEQUALITIES"=>unit_matrix(2));
# > print $HA->HYPERPLANES;
# | 1 1
#
property HYPERPLANES = override VECTORS;
# @category Geometry
# A basis of the lineality space of the hyperplane arrangement.
property LINEALITY_SPACE : Matrix<Scalar>;
# @category Input property
# A cone being subdivided by the [[HYPERPLANES]]
# defaults to the whole space.
#
# @example Take the 2-dimensional positive orthant and slice it along the ray through (1,1)
# > $HA = new HyperplaneArrangement(HYPERPLANES=>[[-1,1]], "SUPPORT.INPUT_RAYS"=>[[1,0],[0,1]]);
# > $CD = $HA->CHAMBER_DECOMPOSITION;
# > print $CD->RAYS;
# | 0 1
# | 1 0
# | 1 1
# > print $CD->MAXIMAL_CONES;
# | {1 2}
# | {0 2}
#
# @example [require bundled:cdd] [prefer cdd] Subdivide the two-dimensional space along the axes
# > $HA = new HyperplaneArrangement(HYPERPLANES=>[[1,0],[0,1]]);
# > $CD = $HA->CHAMBER_DECOMPOSITION;
# > print $CD->RAYS;
# | -1 0
# | 0 -1
# | 0 1
# | 1 0
# > print $CD->MAXIMAL_CONES;
# | {2 3}
# | {1 3}
# | {0 2}
# | {0 1}
# > print $CD->COMPLETE;
# | true
property SUPPORT : Cone<Scalar>;
rule SUPPORT.INEQUALITIES : HYPERPLANES {
$this->SUPPORT->INEQUALITIES = new Matrix<Scalar>(0, $this->HYPERPLANES->cols());
}
precondition : !exists(SUPPORT);
rule LINEALITY_SPACE : HYPERPLANES, SUPPORT.LINEAR_SPAN | SUPPORT.EQUATIONS, SUPPORT.FACETS | SUPPORT.INEQUALITIES {
my $ineq = $this->SUPPORT->lookup("FACETS | INEQUALITIES");
my $eq = $this->SUPPORT->lookup("LINEAR_SPAN | EQUATIONS");
my $hyp = $this->HYPERPLANES;
$this->LINEALITY_SPACE = null_space($ineq / ($eq / $hyp));
}
# @category Geometry
# Dimension of the space which contains the hyperplane arrangement.
property HYPERPLANE_AMBIENT_DIM = override VECTOR_AMBIENT_DIM;
# @category Geometry
# Slicing the [[SUPPORT]] along every hyperplane of [[HYPERPLANES]] one gets a
# polyhedral fan.
#
# @example Take the 2-dimensional positive orthant and slice it along the ray through (1,1)
# > $HA = new HyperplaneArrangement(HYPERPLANES=>[[-1,1]], "SUPPORT.INPUT_RAYS"=>[[1,0],[0,1]]);
# > $CD = $HA->CHAMBER_DECOMPOSITION;
# > print $CD->RAYS;
# | 0 1
# | 1 0
# | 1 1
# > print $CD->MAXIMAL_CONES;
# | {1 2}
# | {0 2}
property CHAMBER_DECOMPOSITION : PolyhedralFan<Scalar>;
# permuting the [[RAYS]]
permutation ConesPerm : PermBase;
rule ConesPerm.PERMUTATION : ConesPerm.CHAMBER_DECOMPOSITION.MAXIMAL_CONES, CHAMBER_DECOMPOSITION.MAXIMAL_CONES {
$this->ConesPerm->PERMUTATION=find_permutation(rows($this->ConesPerm->CHAMBER_DECOMPOSITION->MAXIMAL_CONES), rows($this->CHAMBER_DECOMPOSITION->MAXIMAL_CONES));
}
rule CHAMBER_DECOMPOSITION.MAXIMAL_CONES : ConesPerm.CHAMBER_DECOMPOSITION.MAXIMAL_CONES, ConesPerm.PERMUTATION {
$this->CHAMBER_DECOMPOSITION->MAXIMAL_CONES=permuted_rows($this->ConesPerm->CHAMBER_DECOMPOSITION->MAXIMAL_CONES, $this->ConesPerm->PERMUTATION);
}
# @category Combinatorics
# Incidences between [[CHAMBER_DECOMPOSITION.RAYS]] and [[HYPERPLANES]].
property RAYS_IN_HYPERPLANES : IncidenceMatrix;
# @category Combinatorics
# Number of [[HYPERPLANES]].
#
# @example Coordinate hyperplane arrangement in the plane.
# > $HA = new HyperplaneArrangement(HYPERPLANES=>[[1,0],[0,1]]);
# > print $HA->N_HYPERPLANES;
# | 2
property N_HYPERPLANES = override N_VECTORS;
# @category Combinatorics
# The i-th entry is the signature of the i-th maximal cone of the [[CHAMBER_DECOMPOSITION]] as Set<Int> # of indices of the [[HYPERPLANES]] that evaluate positively on this cone.
#
# @example Take the 2-dimensional positive orthant and slice it along the ray through (1,1)
# > $HA = new HyperplaneArrangement(HYPERPLANES=>[[-1,1]], "SUPPORT.INPUT_RAYS"=>[[1,0],[0,1]]);
# > $CD = $HA->CHAMBER_DECOMPOSITION;
# > print $CD->MAXIMAL_CONES;
# | {1 2}
# | {0 2}
# > print $HA->CHAMBER_SIGNATURES;
# | {}
# | {0}
# > print $HA->chamber_to_signature($CD->MAXIMAL_CONES->[0]);
# | {}
# > print $HA->chamber_to_signature($CD->MAXIMAL_CONES->[1]);
# | {0}
# > print $HA->signature_to_chamber($HA->CHAMBER_SIGNATURES->[0]);
# | 0
# > print $CD->MAXIMAL_CONES->[$HA->signature_to_chamber($HA->CHAMBER_SIGNATURES->[0])];
# | {1 2}
property CHAMBER_SIGNATURES : IncidenceMatrix;
rule CHAMBER_SIGNATURES : ConesPerm.CHAMBER_SIGNATURES, ConesPerm.PERMUTATION {
$this->CHAMBER_SIGNATURES = permuted_rows($this->ConesPerm->CHAMBER_SIGNATURES,$this->ConesPerm->PERMUTATION);
}
# @category Combinatorics
# Given a maximal cone of [[CHAMBER_DECOMPOSITION]] as Set<Int> containing the
# indices of the rays spanning it, return the signature of the cone as Set<Int>
# of indices of the [[HYPERPLANES]] that evaluate negatively on this cone.
#
# @example Take the 2-dimensional positive orthant and slice it along the ray through (1,1)
# > $HA = new HyperplaneArrangement(HYPERPLANES=>[[-1,1]], "SUPPORT.INPUT_RAYS"=>[[1,0],[0,1]]);
# > $CD = $HA->CHAMBER_DECOMPOSITION;
# > print $CD->MAXIMAL_CONES;
# | {1 2}
# | {0 2}
# > print $HA->CHAMBER_SIGNATURES;
# | {}
# | {0}
# > print $HA->chamber_to_signature($CD->MAXIMAL_CONES->[0]);
# | {}
# > print $HA->chamber_to_signature($CD->MAXIMAL_CONES->[1]);
# | {0}
# > print $HA->signature_to_chamber($HA->CHAMBER_SIGNATURES->[0]);
# | 0
# > print $CD->MAXIMAL_CONES->[$HA->signature_to_chamber($HA->CHAMBER_SIGNATURES->[0])];
# | {1 2}
user_method chamber_to_signature : CHAMBER_DECOMPOSITION.MAXIMAL_CONES, CHAMBER_SIGNATURES {
my($this, $cell) = @_;
my $mc = $this->CHAMBER_DECOMPOSITION->MAXIMAL_CONES;
my $cs = $this->CHAMBER_SIGNATURES;
for(my $i=0; $i<$mc->rows(); $i++){
if($mc->row($i) == $cell){
return $cs->[$i];
}
}
die "$cell could not be found among the maximal cones.";
}
# @category Combinatorics
# Given a signature as a Set<Int> of indices that indicate which
# [[HYPERPLANES]] should evaluate negatively (the remaining evaluate
# positively), return the maximal cone of [[CHAMBER_DECOMPOSITION]] associated to
# this signature. The result the index of the maximal cone in the maximal cones
# of [[CHAMBER_DECOMPOSITION]].
#
# @example Take the 2-dimensional positive orthant and slice it along the ray through (1,1)
# > $HA = new HyperplaneArrangement(HYPERPLANES=>[[-1,1]], "SUPPORT.INPUT_RAYS"=>[[1,0],[0,1]]);
# > $CD = $HA->CHAMBER_DECOMPOSITION;
# > print $CD->MAXIMAL_CONES;
# | {1 2}
# | {0 2}
# > print $HA->CHAMBER_SIGNATURES;
# | {}
# | {0}
# > print $HA->chamber_to_signature($CD->MAXIMAL_CONES->[0]);
# | {}
# > print $HA->chamber_to_signature($CD->MAXIMAL_CONES->[1]);
# | {0}
# > print $HA->signature_to_chamber($HA->CHAMBER_SIGNATURES->[0]);
# | 0
# > print $CD->MAXIMAL_CONES->[$HA->signature_to_chamber($HA->CHAMBER_SIGNATURES->[0])];
# | {1 2}
user_method signature_to_chamber : CHAMBER_DECOMPOSITION.MAXIMAL_CONES, CHAMBER_SIGNATURES {
my($this, $signature) = @_;
my $mc = $this->CHAMBER_DECOMPOSITION->MAXIMAL_CONES;
my $cs = $this->CHAMBER_SIGNATURES;
for(my $i=0; $i<$cs->rows(); $i++){
if($cs->[$i] == $signature){
return $i;
}
}
die "$signature could not be found among the signatures.";
}
# Compute defining properties of the [[CHAMBER_DECOMPOSITION]] using reverse search.
rule CHAMBER_DECOMPOSITION.RAYS, CHAMBER_DECOMPOSITION.MAXIMAL_CONES, CHAMBER_DECOMPOSITION.LINEALITY_SPACE, \
CHAMBER_SIGNATURES, RAYS_IN_HYPERPLANES : HYPERPLANES, SUPPORT.FACETS | SUPPORT.INEQUALITIES, \
SUPPORT.LINEAR_SPAN | SUPPORT.EQUATIONS, SUPPORT.RAYS | SUPPORT.INPUT_RAYS, \
SUPPORT.LINEALITY_SPACE | SUPPORT.INPUT_LINEALITY, SUPPORT.CONE_DIM, LINEALITY_SPACE {
my($R, $MC, $S, $LS, $RH) = chamber_decomposition_rs($this);
$this->CHAMBER_DECOMPOSITION->RAYS = $R;
$this->CHAMBER_DECOMPOSITION->MAXIMAL_CONES = $MC;
$this->CHAMBER_SIGNATURES = $S;
$this->CHAMBER_DECOMPOSITION->LINEALITY_SPACE = $LS;
$this->RAYS_IN_HYPERPLANES = $RH;
}
incurs ConesPerm;
rule RAYS_IN_HYPERPLANES : CHAMBER_DECOMPOSITION.RAYS, HYPERPLANES {
my $r = $this->CHAMBER_DECOMPOSITION->RAYS;
my $h = $this->HYPERPLANES;
my @ia;
foreach (@{$h*transpose($r)}) {
my $zeros = new Set<Int>;
for (my $i=0; $i<$r->rows; $i++) {
$zeros->collect($i) if ($_->[$i]==0);
}
push @ia, $zeros;
}
$this->RAYS_IN_HYPERPLANES = new IncidenceMatrix<NonSymmetric>([@ia]);
}
rule CHAMBER_DECOMPOSITION.LINEALITY_SPACE : LINEALITY_SPACE {
$this->CHAMBER_DECOMPOSITION->LINEALITY_SPACE = $this->LINEALITY_SPACE;
}
# @category Visualization
# Unique names assigned to the [[HYPERPLANES]].
# For a polyhedral fan built from scratch, you should create this property by yourself,
# either manually in a text editor, or with a client program.
property HYPERPLANE_LABELS : Array<String> : mutable;
} #End Object HyperplaneArrangement
# @category Geometry
# This function computes the [[CHAMBER_DECOMPOSITION]] of a given hyperplane
# arrangement in a brute force way, by just considering every possible
# signature. Since not every signature gives a valid cell, it is much cheaper
# to traverse the cells of [[CHAMBER_DECOMPOSITION]] by flipping the walls. This
# method is here for verifying results of our other algorithms.
user_function chamber_decomposition_brute_force<Scalar>(HyperplaneArrangement<Scalar>) {
my($HA) = @_;
my $hyperplanes = $HA->HYPERPLANES;
my $supportIneq = $HA->SUPPORT->lookup("INEQUALITIES | FACETS");
my $supportEq = $HA->SUPPORT->lookup("EQUATIONS | LINEAR_SPAN");
my $linSpace = $HA->LINEALITY_SPACE;
my $joinedEq = $linSpace / $supportEq;
my $expectedCellDim = $HA->SUPPORT->CONE_DIM - rank($linSpace);
# my($hyperplanes, $supportIneq, $supportEq, $supportDim) = @_;
my $numberedVectors = new Map<Vector<Scalar>, Int>();
my $cells2signatures = new Map<Set<Int>, Set<Int>>();
for(my $k = 0; $k<= $hyperplanes->rows; $k++){
my $flippable = all_subsets_of_k(sequence(0, $hyperplanes->rows), $k);
foreach my $signature (@$flippable) {
my $cell = transform_to_chamber($hyperplanes, $supportIneq, $joinedEq, $expectedCellDim, $signature, $numberedVectors);
if($cell->size() > 0){
$cells2signatures->{$cell} = $signature;
}
}
}
my @result = canonicalize_ray_order($numberedVectors, $hyperplanes->cols(), $cells2signatures);
return new HyperplaneArrangement(HYPERPLANES=>$hyperplanes, "SUPPORT.INEQUALITIES"=>$supportIneq, "SUPPORT.EQUATIONS"=>$supportEq, "CHAMBER_DECOMPOSITION.RAYS"=>$result[0], "CHAMBER_DECOMPOSITION.MAXIMAL_CONES"=>$result[1], CHAMBER_SIGNATURES=>$result[2], LINEALITY_SPACE=>$linSpace, "CHAMBER_DECOMPOSITION.LINEALITY_SPACE"=>$linSpace);
}
# Different algorithms might return the rays of the [[CHAMBER_DECOMPOSITION]] in
# different orders. This method sorts the rays and applies the resulting
# permutation to other variables from the algorithm. It then returns an array
# with three elements:
# 1. The sorted rays as a Matrix<Scalar>
# 2. The maximal cones of the [[CHAMBER_DECOMPOSITION]] as IncidenceMatrix
# 3. The signatures of the maximal cones as Array<Set<Int>>.
function canonicalize_ray_order<Scalar>(Map<Vector<Scalar>, Int>, Int, Map<Set<Int>, Set<Int>>) {
my($numberedVectors, $dim, $cells2signatures) = @_;
my $n = scalar keys %$numberedVectors;
my $sortedRays = new Matrix<Scalar>(sort keys %$numberedVectors);
my $permutation = new Array<Int>(map { $numberedVectors->{$_} } @$sortedRays);
my $permutedCells2Signatures = group::action($permutation, $cells2signatures);
my @keys = keys %$permutedCells2Signatures;
my $I = new IncidenceMatrix(\@keys);
my $signatures2cells = new Array<Set<Int>>(scalar keys %$cells2signatures);
for(my $i=0; $i<$I->rows(); $i++){
$signatures2cells->[$i] = $permutedCells2Signatures->{$I->[$i]};
}
return ($sortedRays, $I, $signatures2cells);
}
# Given a signature, assemble the associated cell as a Polytope.
sub assemble_chamber {
my($hyperplanes, $supportIneq, $supportEq, $signature) = @_;
my $inequalities = new Matrix($hyperplanes);
$inequalities->minor(~$signature, All) *= -1;
return new Cone(INEQUALITIES=>$inequalities/$supportIneq, EQUATIONS=>$supportEq);
}
# Given a cell as a polytope, extract the indices of the rays of the
# [[CHAMBER_DECOMPOSITION]] that span this cone. If some of the rays are new, add
# them and equip them with indices.
sub extract_vertex_indices {
my($C, $expectedCellDim, $numberedVectors) = @_;
my $result = new Set<Int>();
if($C->CONE_DIM == $expectedCellDim){
my $V = $C->RAYS;
my $n = scalar keys %$numberedVectors;
foreach my $vertex (@$V) {
if(defined $numberedVectors->{$vertex}){
$result += $numberedVectors->{$vertex};
} else {
$result += $n;
$numberedVectors->{$vertex} = $n++;
}
}
}
return $result;
}
# Given a signature, get its representation as Set<Int> of indices of the rays
# of [[CHAMBER_DECOMPOSITION]]. This method is running while we have not found all
# rays, so it will remember new rays and equip them with indices.
sub transform_to_chamber {
my($hyperplanes, $supportIneq, $supportEq, $expectedCellDim, $signature, $numberedVectors) = @_;
my $C = assemble_chamber($hyperplanes, $supportIneq, $supportEq, $signature);
return extract_vertex_indices($C, $expectedCellDim, $numberedVectors);
}
user_function make_hyperplanes_unique_in_support<Scalar>(Matrix<Scalar> , Cone<Scalar> ) {
my($inputHyperplanes, $support) = @_;
my $ineq = $support->lookup("FACETS | INEQUALITIES");
my $eq = $support->lookup("LINEAR_SPAN | EQUATIONS");
my $rays = $support->lookup("RAYS | INPUT_RAYS");
my $lineality = $support->lookup("LINEALITY_SPACE | INPUT_LINEALITY");
my $result = new Set<Int>();
for my $hyp (0..($inputHyperplanes->rows() - 1)) {
# Check whether we already saved an identical hyperplane (up to sign and multiples).
my $id = scalar grep(rank($inputHyperplanes->minor(new Set<Int>($_, $hyp), All)) < 2, @$result);
if($id == 0){
# Check whether the given hyperplane is a facet of the support.
$id = scalar grep(rank(new Matrix<Scalar>($inputHyperplanes->row($hyp),$_)) < 2, (@$ineq, @$eq));
if($id == 0){
# Check whether the given hyperplane intersects the support non-trivially.
my($neg, $pos) = (0,0);
foreach my $ray (@$rays){
my $check = $inputHyperplanes->row($hyp) * $ray;
if($check > 0) { $pos++;}
if($check < 0) { $neg++;}
if($neg > 0 && $pos > 0){
$result += $hyp;
last;
}
}
if($neg == 0 || $pos == 0){
foreach my $lin (@$lineality){
if($inputHyperplanes->row($hyp) * $lin != 0){
$result += $hyp;
last;
}
}
}
}
}
}
if($result->size() > 0){
return $inputHyperplanes->minor($result, All);
} else {
return zero_matrix<Scalar>(0, $inputHyperplanes->cols());
}
}
# @category Producing a hyperplane arrangement
user_function facet_arrangement<Scalar>(Polytope<Scalar>){
my($P) = @_;
return new HyperplaneArrangement(HYPERPLANES=>$P->FACETS,HYPERPLANE_LABELS=>$P->FACET_LABELS);
}
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|