1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
object PlanarNet {
# @category Geometry
# The corresponding 3-polytope.
property POLYTOPE : polytope::Polytope<Scalar>;
# @category Combinatorics
# Counter clockwise ordering of the [[VERTICES]] in each [[MAXIMAL_POLYTOPES]].
# This is a copy of the property [[Polytope::VIF_CYCLIC_NORMAL]] of [[POLYTOPE]].
property VIF_CYCLIC_NORMAL : Array<Array<Int>>;
# @category Combinatorics
# Map which tells which vertex/facet pair of the 3-polytope is mapped to which vertex of the planar net.
# The dependence on the facets comes from the fact that most [[Polytope::VERTICES]] occur more than once in the planar net.
# The inverse is [[VF_MAP_INV]].
property VF_MAP : Map<Pair<Int,Int>,Int>;
# @category Combinatorics
# Map which tells how the [[VERTICES]] of the planar net are mapped to the [[Polytope::VERTICES]] of the 3-polytope.
# Inverse of [[VF_MAP]].
property VF_MAP_INV : Array<Int>;
# @category Combinatorics
# The spanning tree in the [[Polytope::DUAL_GRAPH]] which defines the layout.
# Encoded as a list of edges, directed away from the root facet.
# Indices correspond to [[MAXIMAL_POLYTOPES]] as well as [[Polytope::FACETS]].
# @example The planar net of the 3-cube consists of 6 squares. Looking at the dual tree we can see that the client [[planar_net]]
# gives us the classical cross-shaped planar net, as we have a vertex which is connected to four different vertices and a last one
# which has an edge to one of these four vertices:
# > print planar_net(cube(3))->DUAL_TREE;
# | (0 2) (0 3) (0 4) (0 5) (2 1)
property DUAL_TREE : Array<Pair<Int,Int>>;
# @category Combinatorics
# List of directed edges in the primal graph [[Polytope::GRAPH]] which need flaps for gluing.
# Indices correspond to [[VERTICES]]. The orientation is chosen such that the facet in the layout is always on the left.
# In fact, the flaps define a spanning tree of [[Polytope::GRAPH]].
property FLAPS : Array<Pair<Int,Int>>;
rule VIF_CYCLIC_NORMAL : POLYTOPE.VIF_CYCLIC_NORMAL {
$this->VIF_CYCLIC_NORMAL(temporary) = $this->POLYTOPE->VIF_CYCLIC_NORMAL;
}
weight 0.10;
}
# @topic objects/Visual::PlanarNet::Polygons
# @category Visualization
# Special variant of Visual::Polygons with extra data for
# folding planar nets via threejs:
# Axes: vertex indices of all edges
# DihedralAngles: angle at each edge in the graph of the polytope (in radians)
# DependendVertices: all vertices that are affected by a rotation around an edge
# PolytopeRoot: [ coordinates of the first vertex -> mapped to (0,0) in the net,
# outer normal of the first facet -> mapped to (0, 0, 1),
# up direction for the first edge -> mapped to (0, 1, 0) ]
# @super Visual::Polygons
# @relates PlanarNet
package Visual::PlanarNet::Polygons;
use Polymake::Struct (
[ '@ISA' => 'Visual::Polygons' ],
[ '$Axes' => '#%', default => 'undef' ],
[ '$DihedralAngles' => '#%', default => 'undef' ],
[ '$DependendVertices' => '#%', default => 'undef' ],
[ '$PolytopeRoot' => '#%', default => 'undef' ],
);
# @topic objects/Visual::PlanarNet
# @category Visualization
# Visualization of a 3-polytope as a planar net.
# @super Visual::Container
# @relates PlanarNet
package Visual::PlanarNet;
use Polymake::Struct (
[ '@ISA' => 'Container' ],
[ '$PlanarNet' => '#%', default => 'undef' ],
);
# where to keep any additional data
method representative { $_[0]->PlanarNet }
# @category Visualization
# Parameters to control the shapes of the flaps.
# The precise values are more or less randomly chosen. Should work fine for most polytopes
# whose edge lengths do not vary too much.
options %flap_options=(
# Float absolute minimum width
WidthMinimum=>0.25,
# Float minimum relative width (w.r.t. length of first edge)
WidthRelativeMinimum=>0.1,
# Float absolute width, overrides the previous
Width=>undef,
# Float proportion by which outer edge of flap is shorter than the actual edge (on both sides)
FlapCutOff=>0.2
);
# Add flaps for gluing.
# @options %Visual::Polygons::decorations
# @options %flap_options
# @return Visual::PlanarNet
user_method FLAPS (%Visual::Polygons::decorations, %flap_options) {
my ($self, $decor, $options)=@_;
my $vertices=dehomogenize($self->PlanarNet->VERTICES);
my $flap_edges=$self->PlanarNet->FLAPS;
my $flap_width_min=$options->{WidthMinimum};
my $flap_width_rel=$options->{WidthRelativeMinimum};
my $flap_cutoff=$options->{FlapCutOff};
my $flap_width=$options->{Width};
my $n_flaps=$flap_edges->size();
my @flaps=();
my @flap_vertices=@{rows($vertices)};
my $next_flap_vertex=$vertices->rows();
for (my $i=0; $i<$n_flaps; ++$i) {
my ($ia,$ib) = @{$flap_edges->[$i]};
my ($a,$b) = ($vertices->[$ia],$vertices->[$ib]);
my $vec = $b-$a;
my $norm_vec = sqrt($vec*$vec);
$flap_width = max($norm_vec*$flap_width_rel, $flap_width_min) unless defined($flap_width); # only first flap counts
my $scp = ($b->[0] - $a->[0])/$norm_vec;
# beware of numerical atrocities
if ($scp>1.0) { $scp=1.0 } elsif ($scp<-1.0) { $scp=-1.0 }
my $alpha = $vec->[1]>=0.0 ? Math::Trig::acos($scp) : -Math::Trig::acos($scp);
$alpha -= Math::Trig::pi/2;
my $translation = new Vector<Float>(cos($alpha) * $flap_width, sin($alpha) * $flap_width);
push @flaps, [$ia, $next_flap_vertex, $next_flap_vertex+1, $ib];
push @flap_vertices, $a+$translation+$flap_cutoff*$vec;
push @flap_vertices, $b+$translation-$flap_cutoff*$vec;
$next_flap_vertex += 2;
}
my $flap_vertices_matrix=new Matrix<Float>(@flap_vertices);
unshift @{$self->elements},
new Visual::Polygons( Name => "flaps",
Points => $flap_vertices_matrix,
PointLabels => "hidden",
PointStyle => "hidden",
Facets => \@flaps,
FacetColor => $Visual::Color::PlanarNetFlapColor,
EdgeThickness => 0.05,
NEdges => 4*($self->PlanarNet->POLYTOPE->N_VERTICES-1),
$decor
);
visualize($self);
}
object PlanarNet {
# @category Visualization
# This function is the main purpose of the entire class [[PlanarNet]].
# @options %Visual::Polygons::decorations
# @return Visual::PlanarNet
user_method VISUAL(%Visual::Polygons::decorations) : VERTICES, MAXIMAL_POLYTOPES, VIF_CYCLIC_NORMAL, VF_MAP, VF_MAP_INV, FLAPS, DUAL_TREE, POLYTOPE.N_VERTICES, POLYTOPE.DUAL_GRAPH.DIHEDRAL_ANGLES {
my ($this,$decor)=@_;
my $vif=$this->VIF_CYCLIC_NORMAL;
my $vf_map=$this->VF_MAP;
my $vf_map_inv=$this->VF_MAP_INV;
my $mp = $this->MAXIMAL_POLYTOPES;
my $n_facets=$mp->rows();
die "VIF_CYCLIC_NORMAL and MAXIMAL_POLYTOPES sizes do not match" unless $vif->size() == $n_facets;
# faces of the planar net
my $vertices=dehomogenize($this->VERTICES);
my @polygons = ();
for (my $i=0; $i<$n_facets; ++$i) {
my @this_face = map { $vf_map->{new Pair<Int,Int>($_,$i)} } @{$vif->[$i]};
push @polygons, \@this_face;
}
my %dependmap = map { $_ => new Set } (0..$n_facets-1);
my @angles;
my @axes;
my @edgedepend;
foreach my $pair (reverse(@{$this->DUAL_TREE})) {
my ($f,$t) = @$pair;
my @a = grep { $mp->[$f]->contains($_) } @{$polygons[$t]};
push @axes, $a[0] == $polygons[$t]->[0] && $a[1] == $polygons[$t]->[-1] ? [reverse(@a)] : \@a;
push @angles, $this->POLYTOPE->DUAL_GRAPH->DIHEDRAL_ANGLES->edge($f,$t);
my $depend = $dependmap{$t} + $mp->[$t] - $mp->[$f];
push @edgedepend, [@$depend];
$dependmap{$f} += $depend;
}
my ($first,$second) = @$vf_map_inv[0..1];
my $rootfirst = convert_to<Float>($this->POLYTOPE->VERTICES->[$first]->slice(range_from(1)));
my $edge = convert_to<Float>($this->POLYTOPE->VERTICES->[$second]->slice(range_from(1))) - $rootfirst;
my $rootnormal = convert_to<Float>(-1 * $this->POLYTOPE->FACETS->[$this->DUAL_TREE->[0]->first]->slice(range_from(1)));
my $rootup = [ $rootnormal->[1] * $edge->[2] - $rootnormal->[2] * $edge->[1],
$rootnormal->[2] * $edge->[0] - $rootnormal->[0] * $edge->[2],
$rootnormal->[0] * $edge->[1] - $rootnormal->[1] * $edge->[0] ];
my $Layout = new Visual::PlanarNet::Polygons( Name => "planar_net_".$this->name,
Points => $vertices,
PointLabels => $vf_map_inv,
Facets => \@polygons,
NEdges => $n_facets-1+2*($this->POLYTOPE->N_VERTICES-1),
Axes => \@axes,
DihedralAngles => \@angles,
DependendVertices => \@edgedepend,
PolytopeRoot => [[@$rootfirst],[@$rootnormal],$rootup],
$decor
);
visualize( new Visual::PlanarNet(Name => $this->name, PlanarNet => $this, $Layout) );
}
}
package Visual::Color;
# Color for flaps in the visualization of planar nets
custom $PlanarNetFlapColor="255 255 255"; # white
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|