1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
object SubdivisionOfVectors {
file_suffix sov
# @category Geometry
# The vectors of the subdivision,
property VECTORS : Matrix<Scalar> {
method canonical {
my ($this,$M)=@_;
if ($this->isa("SubdivisionOfPoints")) {
polytope::canonicalize_point_configuration($M);
}
}
}
# permuting [[VECTORS]]
permutation VectorPerm : PermBase;
rule VectorPerm.PERMUTATION : VectorPerm.VECTORS, VECTORS {
$this->VectorPerm->PERMUTATION = find_matrix_row_permutation($this->VectorPerm->VECTORS, $this->VECTORS)
// die "no permutation";
}
rule VECTORS : VectorPerm.VECTORS, VectorPerm.PERMUTATION {
$this->VECTORS = permuted($this->VectorPerm->VECTORS, $this->VectorPerm->PERMUTATION);
}
weight 1.10;
# @category Geometry
# Dimension of the space in which the vector configuration lives.
property VECTOR_AMBIENT_DIM : Int;
# @category Geometry
# Dimension of the linear hull of the vector configuration.
property VECTOR_DIM : Int;
# @category Geometry
# [[AMBIENT_DIM]] and [[DIM]] coincide.
property FULL_DIM : Bool;
# @category Geometry
# Number of [[VECTORS]].
property N_VECTORS : Int;
# @category Geometry
# Dual basis of the linear hull of the vector configuration
property LINEAR_SPAN : Matrix<Scalar>;
# @category Visualization
# Unique names assigned to the [[VECTORS]].
# If specified, they are shown by visualization tools instead of point indices.
property LABELS : Array<String> : mutable;
rule LABELS : VectorPerm.LABELS, VectorPerm.PERMUTATION {
$this->LABELS=permuted($this->VectorPerm->LABELS, $this->VectorPerm->PERMUTATION);
}
weight 1.10;
# @category Combinatorics
# Maximal cells of the polyhedral complex.
# Indices refer to [[VECTORS]]. Points do not have to be vertices of the cells.
property MAXIMAL_CELLS : IncidenceMatrix;
# @category Combinatorics
# The number of [[MAXIMAL_CELLS]]
property N_MAXIMAL_CELLS : Int;
rule MAXIMAL_CELLS : VectorPerm.MAXIMAL_CELLS, VectorPerm.PERMUTATION {
$this->MAXIMAL_CELLS=permuted_cols($this->VectorPerm->MAXIMAL_CELLS, $this->VectorPerm->PERMUTATION);
}
weight 1.10;
# permuting [[MAXIMAL_CELLS]]
permutation CellPerm : PermBase;
rule CellPerm.PERMUTATION : CellPerm.MAXIMAL_CELLS, MAXIMAL_CELLS {
$this->CellPerm->PERMUTATION = find_permutation(rows($this->CellPerm->MAXIMAL_CELLS), rows($this->MAXIMAL_CELLS))
// die "no permutation";
}
rule MAXIMAL_CELLS : CellPerm.MAXIMAL_CELLS, CellPerm.PERMUTATION {
$this->MAXIMAL_CELLS = permuted_rows($this->CellPerm->MAXIMAL_CELLS, $this->CellPerm->PERMUTATION);
}
weight 1.10;
# If M is incidence matrix between the vertices and the [[MAXIMAL_CELLS]],
# then the Altshuler determinant is defined as
# max{det(M ∗ M<sup>T</sup>), det(M<sup>T</sup> ∗ M)}.
property ALTSHULER_DET : Integer;
rule ALTSHULER_DET : MAXIMAL_CELLS {
$this->ALTSHULER_DET=altshuler_det($this->MAXIMAL_CELLS);
}
# @category Geometry
# True if [[VECTORS]] for each maximal cell are in convex position.
property CONVEX : Bool;
# @category Geometry
# Minimal nonnegative lattice vector in secondary cone of the subdivision given by [[MAXIMAL_CELLS]].
property MIN_WEIGHTS : Vector<Int>;
# @category Geometry
# Returns the //i//-th cell of the complex as a [[VectorConfiguration]]
# @param Int i
# @return VectorConfiguration
user_method cell($) : MAXIMAL_CELLS, VECTORS {
my ($self, $i) = @_;
return new VectorConfiguration<Scalar>(VECTORS=>$self->VECTORS->minor($self->MAXIMAL_CELLS->[$i],All));
}
}
object SubdivisionOfPoints {
file_suffix sop
# @category Geometry
# The points of the configuration. Multiples allowed.
property POINTS = override VECTORS;
# @category Geometry
# The number of [[POINTS]] in the configuration.
property N_POINTS = override N_VECTORS;
# @category Geometry
# Affine dimension of the point configuration.
# Similar to [[PointConfiguration::DIM]].
user_method DIM() : VECTOR_DIM {
return $_[0]->VECTOR_DIM-1;
}
# @category Geometry
# Ambient dimension of the point configuration (without the homogenization coordinate).
# Similar to [[PointConfiguration::AMBIENT_DIM]].
user_method AMBIENT_DIM() : VECTOR_AMBIENT_DIM {
return $_[0]->VECTOR_AMBIENT_DIM-1;
}
# @category Visualization
# Unique names assigned to the [[POINTS]].
# If specified, they are shown by visualization tools instead of point indices.
property POINT_LABELS = override LABELS;
# @category Geometry
# Vector assigning a weight to each point to get a regular subdivision.
property WEIGHTS : Vector<Scalar>;
rule WEIGHTS : VectorPerm.WEIGHTS, VectorPerm.PERMUTATION {
$this->WEIGHTS=permuted($this->VectorPerm->WEIGHTS, $this->VectorPerm->PERMUTATION);
}
weight 1.10;
# @category Geometry
# Whether the subdivision is regular, i.e. induced by a weight vector.
property REGULAR : Bool;
# @category Geometry
# A subdivision is unimodular if it is a triangulation such that each maximal
# simplex has unit normalized volume. If the subdivision is lower dimensional,
# it is considered in its affine hull.
#
# @example Unit square, triangulated.
# > $S = new SubdivisionOfPoints(POINTS=>cube(2,0)->VERTICES, WEIGHTS=>[0,0,0,1]);
# > print $S->UNIMODULAR
# | true
# @example Unit 3-cube, triangulation induced by four compatible vertex splits.
# > $S = new SubdivisionOfPoints(POINTS=>cube(3,0)->VERTICES, WEIGHTS=>[0,1,1,0,1,0,1,0]);
# > print $S->UNIMODULAR
# | false
property UNIMODULAR : Bool;
# @category Geometry
# The polyhedral complex induced by the cells of the subdivision.
property POLYHEDRAL_COMPLEX : PolyhedralComplex<Scalar>;
# @category Geometry
# Returns the //i//-th cell of the complex as a [[PointConfiguration]]
# @param Int i
# @return PointConfiguration
user_method cell($) : MAXIMAL_CELLS, POINTS {
my ($self, $i) = @_;
return new PointConfiguration<Scalar>(POINTS=>$self->POINTS->minor($self->MAXIMAL_CELLS->[$i],All));
}
# @category Geometry
# The tight span of the subdivision.
property TIGHT_SPAN : PolyhedralComplex<Scalar>;
}
object polytope::Polytope {
# @category Triangulation and volume
# Polytopal Subdivision of the polytope using only its vertices.
property POLYTOPAL_SUBDIVISION : SubdivisionOfPoints<Scalar> : multiple{
# @category Combinatorics
# The splits that are coarsenings of the subdivision.
# If the subdivision is regular these form the unique split decomposition of
# the corresponding weight function.
property REFINED_SPLITS : Set<Int>;
}
rule POLYTOPAL_SUBDIVISION.MAXIMAL_CELLS : VertexPerm.POLYTOPAL_SUBDIVISION.MAXIMAL_CELLS, VertexPerm.PERMUTATION {
$this->POLYTOPAL_SUBDIVISION->MAXIMAL_CELLS=permuted_cols($this->VertexPerm->POLYTOPAL_SUBDIVISION->MAXIMAL_CELLS, $this->VertexPerm->PERMUTATION);
}
weight 1.20;
}
object polytope::PointConfiguration {
# @category Triangulation and volume
#Polytopal Subdivision of the point configuration
property POLYTOPAL_SUBDIVISION : SubdivisionOfPoints<Scalar> : multiple{
# @category Combinatorics
# The splits that are coarsenings of the subdivision.
# If the subdivision is regular these form the unique split decomposition of
# the corresponding weight function.
property REFINED_SPLITS : Set<Int>;
}
}
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|