File: BasicLatticeTypes.h

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (228 lines) | stat: -rw-r--r-- 7,015 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once

#include "polymake/client.h"
#include "polymake/Graph.h"
#include "polymake/Set.h"
#include "polymake/Array.h"
#include "polymake/vector"
#include "polymake/IncidenceMatrix.h"
#include <algorithm>
#include "polymake/graph/Decoration.h"
#include "polymake/graph/Closure.h"

namespace polymake { namespace graph { namespace lattice {

// Every CrossCut needs to provide an operator
//
// bool operator()(const Decoration& data), which accepts a decoration and then returns whether this
// node should be kept (true) or discarded (false).

/*
 * The trivial cut - accepts everything
 */
template <typename Decoration>
class TrivialCut {
public:
  TrivialCut() = default;
  bool operator()(const Decoration& data) const { return true; }
};

/*
 * Only keeps sets not intersecting a fixed set
 */
template <typename Decoration>
class SetAvoidingCut {
protected:
  const Set<Int> avoid;
public:
  SetAvoidingCut(const Set<Int>& set_arg) : avoid(set_arg) {}

  bool operator()(const Decoration &data) const
  {
    return (data.face * avoid).empty();
  }
};

/*
 * Only keeps sets smaller than the full set.
 */
template <typename Decoration>
class NotFullSetCut {
protected:
  const Int full_set_size;
public:
  NotFullSetCut(const Int full_set_size_)
    : full_set_size(full_set_size_) {}

  bool operator()(const Decoration& data) const
  {
    return data.face.size() < full_set_size;
  }
};

namespace RankCutType {

const bool GreaterEqual = false;
const bool LesserEqual = true;

}

/*
 * Only keeps nodes whose rank is greater equal (or lesser equal) a certain number.
 */
template <typename Decoration, bool lesser_equal>
class RankCut {
protected:
  const Int compare;
public:
  RankCut(Int comp_arg)
    : compare(comp_arg) {}

  bool operator()(const Decoration& data) const
  {
    return lesser_equal ? data.rank <= compare : data.rank >= compare;
  }
};

/*
 * This encapsulates various parameters for restricting the rank of a lattice.
 */
struct RankRestriction {
  Int boundary_rank;            // up to which dimension (included!)
  bool rank_restricted;         // Do we want to restrict the rank?
  bool rank_restriction_type;   // RankCutType::LesserEqual or ::GreaterEqual

  RankRestriction()
    : boundary_rank(0)
    , rank_restricted(false)
    , rank_restriction_type(false) {}

  RankRestriction(bool res_arg, bool res_type, Int dim_arg)
    : boundary_rank(dim_arg)
    , rank_restricted(res_arg)
    , rank_restriction_type(res_type) {}
};

/*
 * Makes a cut from two cuts: Both have to return true for a final true value
 */
template <typename C1, typename C2>
class CutAnd {
protected:
  const C1& c1;
  const C2& c2;
public:
  CutAnd(const C1& a1, const C2& a2)
    : c1(a1), c2(a2) {}

  template <typename Decoration>
  bool operator()(const Decoration& data) const
  {
    return c1(data) && c2(data);
  }
};

/*
 * In the lattice building algorithm, the data handled by the closure operator can be different
 * from the data one wants to attach to the final lattice.
 * The decorator converts the closure data to the actual decoration. 
 * It needs to provide the following interface:
 * - const Decoration compute_initial_decoration(const ClosureData& face) const:
 *   Here, Decoration needs to match the Decoration of the corresponding lattice and
 *   ClosureData must be the ClosureData returned by the closure operator. The function computes
 *   the decoration of the initial node.
 * - const Decoration compute_decoration(const ClosureData& face, const Decoration& predecessor_data) const:
 *   Given the closure data of a node and the decoration of *one of* its predecessors, this computes
 *   the decoration of this node.
 * - const Decoration compute_artificial_decoration(const NodeMap<Directed, BasicDecoration>& decor,
 *                                                  const std::list<Int>& max_nodes) const
 *   In some cases, an artificial top node is added to the lattice at the end of the algorithm. This
 *   computes its decor from a node map containing all previous decorations and a list of indices of all
 *   nodes which are maximal.
 */

/*
 * The basic decorator: Faces are either the sets computed during the closure algorithm
 * or the intersection of the corresponding coatoms (if built dually).
 * Ranks are computed as heights in the lattice plus a potential shift.
 */
template <typename FaceData = BasicClosureOperator<BasicDecoration>::ClosureData>
class BasicDecorator {
protected:
  const Int total_size;
  const Int initial_rank;
  const bool built_dually;
  const Set<Int> artificial_set;

public:
  // dual type
  BasicDecorator(Int n_vertices, Int top_rank, const Set<Int> artificial)
    : total_size(n_vertices)
    , initial_rank(top_rank)
    , built_dually(true)
    , artificial_set(artificial) {}

  //primal type
  BasicDecorator(Int bottom_rank, const Set<Int> artificial)
    : total_size(0)
    , initial_rank(bottom_rank)
    , built_dually(false)
    , artificial_set(artificial) {}

  BasicDecoration compute_decoration(const FaceData& face,
                                     const BasicDecoration& predecessor_data) const
  {
    BasicDecoration data;
    data.rank = predecessor_data.rank + (built_dually ? -1 : 1);
    data.face = built_dually ? face.get_dual_face() : face.get_face();
    return data;
  }

  BasicDecoration compute_initial_decoration(const FaceData& face) const
  {
    BasicDecoration data;
    data.rank = initial_rank;
    data.face = built_dually? face.get_dual_face() : face.get_face();
    return data;
  }

  BasicDecoration compute_artificial_decoration(const NodeMap<Directed, BasicDecoration>& decor,
                                                const std::list<Int>& max_nodes) const
  {
    BasicDecoration data;
    auto max_list = attach_member_accessor( select(decor, max_nodes),
                                            ptr2type<BasicDecoration, Int, &BasicDecoration::rank>()
                                            );
    data.rank = built_dually ?
      accumulate(max_list, operations::min())-1 :
      accumulate(max_list, operations::max())+1 ;
    data.face = artificial_set;
    return data;
  }
};

} } }


// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: