1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/Graph.h"
#include "polymake/Heap.h"
#include "polymake/internal/chunk_allocator.h"
#include <cassert>
namespace polymake {
namespace graph {
//! Result of comparison of two labels
enum class DijkstraLabelCmp {
//! new label is better in all criteria, old label and all its siblings must be discarded
discard_old_and_siblings,
//! old label is better in all criteria, new label must be discarded
discard_new,
//! labels are not comparable, both must be propagated further
propagate_both,
//! new label is better in the sense of priority queue order,
//! old label becomes its sibling
replace_old,
//! new label is better in the sense of priority queue order,
//! old label must be discarded but its siblings survive
discard_old_keep_siblings,
//! old label is better in the sense of priority queue order,
//! new label becomes its sibling
keep_new_as_sibling,
//! old label is better in the sense of priority queue order but some secondary criteria were improved,
//! new label becomes its sibling
keep_new_update_old
};
class DijkstraShortestPathBase {
public:
template <typename FullLabel>
struct Label {
explicit Label(Int node_arg)
: node(node_arg) {}
void set_predecessor(FullLabel* pred)
{
assert(pred && !predecessor);
predecessor = pred;
++pred->refc;
}
//! predecessor on the shortest path from the source, nullptr for start node
FullLabel* predecessor = nullptr;
//! Graph node index
Int node;
//! number of successor labels plus 1 for the node or sibling list
Int refc = 0;
//! position in the priority queue or -1 for already processed labels
Int heap_pos = -1;
};
struct LabelCostComparator : public operations::cmp {
template <typename FullLabel>
pm::cmp_value operator() (const FullLabel& l1, const FullLabel& l2) const
{
return operations::cmp::operator()(l1.get_min_cost(), l2.get_min_cost());
}
};
template <typename Top>
class Data {
public:
using top_t = Top;
using graph_t = typename Top::graph_t;
using label_t = typename Top::label_t;
using labels_on_node_dict = NodeMap<typename graph_t::dir, label_t*>;
using label_comparator_t = typename Top::label_comparator_t;
class HeapPolicy {
public:
using value_type = label_t*;
static Int position(const label_t* label)
{
return label->heap_pos;
}
static void update_position(label_t* label, Int old_pos, Int new_pos)
{
label->heap_pos=new_pos;
}
const label_t& key(const label_t* label) const
{
return *label;
}
label_comparator_t key_comparator() const
{
return label_comparator_t{};
}
};
using prio_queue_t = Heap<HeapPolicy>;
explicit Data(const graph_t& G_arg)
: G(G_arg)
, labels_on_node(G, nullptr)
, label_alloc(sizeof(label_t)) {}
//! remove all labels
void clear()
{
fill_range(entire_range(labels_on_node), nullptr);
heap.clear();
label_alloc.clear();
}
template <typename... Args, typename = std::enable_if_t<std::is_constructible<label_t, Int, Args...>::value>>
label_t* construct_label(Int node, Args&&... args)
{
return new(label_alloc.allocate()) label_t(node, std::forward<Args>(args)...);
}
void reclaim_label(label_t* label)
{
label->~label_t();
label_alloc.reclaim(label);
}
const graph_t& G;
labels_on_node_dict labels_on_node;
prio_queue_t heap;
pm::chunk_allocator label_alloc;
};
template <typename Top>
class Algo {
public:
using top_t = Top;
using graph_t = typename Top::graph_t;
using label_t = typename Top::label_t;
using data_t = typename Top::template Data<Top>;
using algo_top = typename Top::template Algo<Top>;
explicit Algo(data_t& data_arg)
: data(data_arg) {}
const algo_top& top() const { return static_cast<const algo_top&>(*this); }
template <typename Predicate>
const label_t* solve(Int source, const Predicate& target, bool backward = false) const
{
if (backward && graph_t::dir::value)
throw std::runtime_error("backward search is only defined for directed graphs");
start_search(source);
return do_search(target, backward);
}
bool process_popped(const label_t* label, bool backward) const
{
return true;
}
template <typename... Args, typename = std::enable_if_t<std::is_constructible<label_t, Int, Args...>::value>>
label_t* construct_label(Args&&... args) const
{
return data.construct_label(std::forward<Args>(args)...);
}
protected:
void start_search(Int node) const
{
label_t* const label = top().construct_label(node);
data.labels_on_node[node] = label;
label->refc = 1;
data.heap.push(label);
}
template <typename Predicate>
const label_t* do_search(const Predicate& target, bool backward) const
{
while (!data.heap.empty()) {
label_t* const pred_label = data.heap.pop();
if (top().process_popped(pred_label, backward)) {
if (target(*pred_label))
return pred_label;
}
if (backward) {
for (auto edge_it = entire(data.G.in_edges(pred_label->node)); !edge_it.at_end(); ++edge_it)
top().propagate(pred_label, edge_it.from_node(), *edge_it);
} else {
for (auto edge_it = entire(data.G.out_edges(pred_label->node)); !edge_it.at_end(); ++edge_it)
top().propagate(pred_label, edge_it.to_node(), *edge_it);
}
}
return nullptr;
}
void propagate(label_t* const pred_label, const Int cur_node, const Int cur_edge_id) const
{
label_t* cur_label = data.labels_on_node[cur_node];
if (cur_label && cur_label->heap_pos < 0) {
// node already settled
return;
}
label_t* new_label = top().construct_label(pred_label, cur_node, cur_edge_id);
if (cur_label) {
switch (top().compare_labels(new_label, cur_label)) {
case DijkstraLabelCmp::discard_new:
data.reclaim_label(new_label);
return;
case DijkstraLabelCmp::discard_old_and_siblings:
top().drop_label(cur_label);
top().erase_label(cur_label);
break;
default:
throw std::runtime_error("DijkstraShortestPathBase: unexpected label comparison value");
}
}
top().push_new_label(new_label, pred_label);
}
void push_new_label(label_t* new_label, label_t* pred_label) const
{
new_label->set_predecessor(pred_label);
new_label->refc = 1;
data.labels_on_node[new_label->node] = new_label;
data.heap.push(new_label);
}
void drop_label(label_t* label) const
{
if (label->heap_pos >= 0)
data.heap.erase_at(label->heap_pos);
}
void erase_label(label_t* label) const
{
if (--label->refc==0) {
if (label->predecessor) {
--label->predecessor->refc;
}
data.reclaim_label(label);
}
}
data_t& data;
};
};
} }
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|