1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/client.h"
#include "polymake/Vector.h"
#include "polymake/Array.h"
#include "polymake/Matrix.h"
#include "polymake/Integer.h"
#include "polymake/Rational.h"
#include "polymake/SparseMatrix.h"
#include "polymake/Set.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/linalg.h"
namespace polymake {
namespace graph {
namespace dcel {
class DoublyConnectedEdgeList;
}
using DoublyConnectedEdgeList = dcel::DoublyConnectedEdgeList;
DoublyConnectedEdgeList conway_ambo_impl(const DoublyConnectedEdgeList& old);
DoublyConnectedEdgeList conway_kis_impl(const DoublyConnectedEdgeList& old);
DoublyConnectedEdgeList conway_snub_impl(const DoublyConnectedEdgeList& old);
DoublyConnectedEdgeList conway_CG_fundtri2(DoublyConnectedEdgeList& old);
DoublyConnectedEdgeList conway_CG_fundtri3(DoublyConnectedEdgeList& old);
namespace dcel {
template<typename Container> class HalfEdgeTemplate;
template<typename Container> class VertexTemplate;
template<typename Container> class FaceTemplate;
using HalfEdge = HalfEdgeTemplate<DoublyConnectedEdgeList>;
using Face = FaceTemplate<DoublyConnectedEdgeList>;
using Vertex = VertexTemplate<DoublyConnectedEdgeList>;
template<typename Container>
class VertexTemplate {
private:
const Container* container;
HalfEdgeTemplate<Container>* incidentEdge;
friend Container;
public:
VertexTemplate()
: container(nullptr)
, incidentEdge(nullptr) {};
HalfEdgeTemplate<Container>* getIncidentEdge() const
{
return incidentEdge;
}
void setContainer(const Container* c){
container = c;
}
Int getID() const {
return container->getVertexId(this);
}
void setIncidentEdge(HalfEdgeTemplate<Container>* edge)
{
incidentEdge = edge;
}
};
template<typename Container>
class FaceTemplate {
private:
const Container* container;
HalfEdge* half_edge;
Rational det_coord;
friend Container;
public:
FaceTemplate()
: container(nullptr)
, half_edge(nullptr) {}
HalfEdge* getHalfEdge() const
{
return half_edge;
}
void setContainer(const Container* c){
container = c;
}
Int getID() const {
return container->getFaceId(this);
}
void setHalfEdge(HalfEdge* edge)
{
half_edge = edge;
}
bool operator==(const FaceTemplate& other) const
{
return half_edge == other.half_edge;
}
const Rational& getDetCoord() const
{
return det_coord;
}
void setDetCoord(const Rational& new_det_coord)
{
det_coord = new_det_coord;
}
};
template<typename Container>
class HalfEdgeTemplate {
private:
const Container* container;
HalfEdgeTemplate* twin;
HalfEdgeTemplate* next;
HalfEdgeTemplate* prev;
Vertex* head;
Face* face;
Rational length;
friend Container;
public:
HalfEdgeTemplate()
: container(nullptr)
, twin(nullptr)
, next(nullptr)
, prev(nullptr)
, head(nullptr)
, face(nullptr)
, length(1) {}
bool operator==(const HalfEdgeTemplate& other) const
{
return twin == other.twin && next == other.next;
}
const Rational& getLength() const
{
return length;
}
void setContainer(const Container* c){
container = c;
}
Int getID() const {
return container->getHalfEdgeId(this);
}
void setLength(const Rational& newLength)
{
length = newLength;
}
HalfEdgeTemplate* getTwin()
{
return twin;
}
const HalfEdgeTemplate* getTwin() const
{
return twin;
}
void setTwin(HalfEdgeTemplate* newTwin)
{
twin = newTwin;
newTwin->twin = this;
}
HalfEdgeTemplate* getNext()
{
return next;
}
const HalfEdgeTemplate* getNext() const
{
return next;
}
void setNext(HalfEdgeTemplate* newNext)
{
next = newNext;
newNext->prev = this;
}
HalfEdgeTemplate* getPrev()
{
return prev;
}
const HalfEdgeTemplate* getPrev() const
{
return prev;
}
void setPrev(HalfEdgeTemplate* newPrev)
{
prev = newPrev;
newPrev->next = this;
}
Vertex* getHead()
{
return head;
}
const Vertex* getHead() const
{
return head;
}
void setHead(Vertex* newHead)
{
head = newHead;
newHead->setIncidentEdge(this);
}
void setFace(Face* newFace)
{
face = newFace;
newFace->setHalfEdge(this);
}
Face* getFace()
{
return face;
}
const Face* getFace() const
{
return face;
}
};
class DoublyConnectedEdgeList {
public:
private:
mutable Matrix<Int> matrix_representation;
static constexpr Int null_id() { return std::numeric_limits<Int>::max(); }
using flip_sequence = std::list<Int>;
private:
Array<Vertex> vertices;
Array<HalfEdge> halfedges;
Array<Face> faces;
bool with_faces;
public:
DoublyConnectedEdgeList() = default;
DoublyConnectedEdgeList(const DoublyConnectedEdgeList& list){
copy_from(list);
}
DoublyConnectedEdgeList &operator=(const DoublyConnectedEdgeList& other){
this->copy_from(other);
return *this;
}
void copy_from(const DoublyConnectedEdgeList& other)
{
with_faces = other.with_faces;
if(with_faces){
resize(other.vertices.size(), other.halfedges.size(), other.faces.size());
} else {
resize(other.vertices.size(), other.halfedges.size());
}
for(Int i=0; i<vertices.size(); i++){
vertices[i].incidentEdge = &halfedges[other.vertices[i].getIncidentEdge()->getID()];
}
for(Int i=0; i<halfedges.size(); i++){
halfedges[i].twin = &halfedges[other.halfedges[i].getTwin()->getID()];
halfedges[i].next = &halfedges[other.halfedges[i].getNext()->getID()];
halfedges[i].prev = &halfedges[other.halfedges[i].getPrev()->getID()];
halfedges[i].head = &vertices[other.halfedges[i].getHead()->getID()];
halfedges[i].length = other.halfedges[i].getLength();
if(with_faces)
halfedges[i].face = &faces[other.halfedges[i].getFace()->getID()];
}
if(with_faces){
for(Int i=0; i<faces.size(); i++){
faces[i].half_edge = &halfedges[other.faces[i].getHalfEdge()->getID()];
faces[i].det_coord = other.faces[i].getDetCoord();
}
}
}
friend DoublyConnectedEdgeList polymake::graph::conway_CG_fundtri2(DoublyConnectedEdgeList& old);
friend DoublyConnectedEdgeList polymake::graph::conway_CG_fundtri3(DoublyConnectedEdgeList& old);
friend DoublyConnectedEdgeList polymake::graph::conway_ambo_impl(const DoublyConnectedEdgeList& old);
// DoublyConnectedEdgeList kis(const DoublyConnectedEdgeList& old);
friend DoublyConnectedEdgeList polymake::graph::conway_kis_impl(const DoublyConnectedEdgeList& old);
// DoublyConnectedEdgeList snub(const DoublyConnectedEdgeList& old);
friend DoublyConnectedEdgeList polymake::graph::conway_snub_impl(const DoublyConnectedEdgeList& old);
DoublyConnectedEdgeList dual() const;
bool operator==(const DoublyConnectedEdgeList& other) const{
return other.toMatrixInt() == toMatrixInt();
}
/*
const Array<Vertex>& getVertices() const
{
return vertices;
}
const Array<HalfEdge>& getHalfEdges() const
{
return halfedges;
}
*/
const Array<Face>& getFaces() const
{
return faces;
}
// get the number of vertices corresponding to an DCEL input array
static Int getNumVert(const Matrix<Int>& half_edge_list);
// get the number of triangles corresponding to an DCEL input array
static Int getNumTriangs(const Matrix<Int>& half_edge_list);
// Construct a DCEL out of a given half edge list.
// The ith element in dcel_data is [i.head, (i+1).head, i.next, (i+1).next, i.face, (i+1).face].
// The latter two entries may be omitted if no faces are specified
explicit DoublyConnectedEdgeList(const Matrix<Int>& half_edge_list);
DoublyConnectedEdgeList(const Array<Array<Int>>& vif_cyclic_normals);
DoublyConnectedEdgeList(const Matrix<Int>& half_edge_list, const Vector<Rational>& coords);
const Matrix<Int>& toMatrixInt() const;
Array<Array<Int>> faces_as_cycles() const;
private:
void populate(const Matrix<Int>& half_edge_list);
void populate();
void resize();
void resize(Int nvert, Int nhe);
void resize(Int nvert, Int nhe, Int nfaces);
void connect_halfedges(HalfEdge* prev, HalfEdge* next){
prev->setNext(next);
next->setPrev(prev);
}
friend struct pm::spec_object_traits< pm::Serialized< polymake::graph::dcel::DoublyConnectedEdgeList > >;
// set the incidences of an edge (which are two half edges) according to the input
void setEdgeIncidences(Int halfEdgeId, Int headId, Int twinHeadId, Int nextId, Int twinNextId);
// set face incidences of an edge
void setFaceIncidences(Int half_edge_id, Int face_id, Int twin_face_id);
void verifyHalfedge(Int& counter, const std::pair<Int, Int>& key, Map<std::pair<Int, Int>, Int>& existing_edges);
void insert_container();
public:
// return the halfedges-vertices incidence matrix
SparseMatrix<Int> EdgeVertexIncidenceMatrix() const;
// return true if the edge of index 'edgeId' is flippable, the two half edges have id 'edgeId' and 'edgeId'+1
bool isFlippable(Int edgeId) const;
// flip half edge and its twin ccw
void flipHalfEdge(HalfEdge* halfEdge);
void flipEdgeWithFaces(Int edge_id);
// flip edge of index 'edgeId'
void flipEdge(Int edgeId);
// unflip half edge and its twin ccw
void unflipHalfEdge(HalfEdge* halfEdge);
// unflip edge of index 'edgeId'
void unflipEdge(Int edgeId);
// return the total number of vertices
Int getNumVertices() const
{
return this->vertices.size();
}
// returns the number of half edges
Int getNumHalfEdges() const
{
return this->halfedges.size();
}
// returns the number of edges
Int getNumEdges() const
{
return getNumHalfEdges()/2;
}
// returns the number of faces
Int getNumFaces() const
{
return faces.size();
}
// return the index of the given vertex
Int getVertexId(const Vertex* vertex) const
{
if (vertex >= vertices.begin() && vertex < vertices.end())
return vertex - vertices.begin();
return null_id();
}
// return the index of the given halfedge
Int getHalfEdgeId(const HalfEdge* halfEdge) const
{
if (halfEdge >= halfedges.begin() && halfEdge < halfedges.end())
return halfEdge - halfedges.begin();
return null_id();
}
// return a pointer to the half edge with the given id
const HalfEdge* getHalfEdge(const Int id) const
{
return &halfedges[id];
}
const Face* getFace(const Int face_id) const
{
return &faces[face_id];
}
Int getFaceId(const Face* face) const
{
if (face >= faces.begin() && face < faces.end())
return face - faces.begin();
return null_id();
}
/* return the indices of the half edges that form a quadrilateral around the half edge of index id
k
/ \ half edge ik has index id
/ | \
/ | \ the output vector gives the id's of the surrounding quad as [ij, jk, kl, il]
l \ | / j
\ | /
\ /
i
*/
std::array<Int, 8> getQuadId(Int id) const;
// set the lengths of the edges according to the input vector
void setMetric(const Vector<Rational>& metric);
// set the A-coordinates of according to the input vector
void setAcoords(const Vector<Rational>& acoords);
// return the lengths of the edges
Vector<Rational> edgeLengths() const;
// calculte the inequalities that define the secondary cone
Matrix<Rational> DelaunayInequalities() const;
// for each valid facet of the secondary cone we collect the indices of those edges whose Delaunay inequalities define that facet
Array<flip_sequence> flippableEdges(const flip_sequence& list_arg = std::list<Int>()) const;
Matrix<Rational> coneFacets() const;
// normalize the Vector in the positive orthant by dividing by its 1-norm
template <typename TVec>
static
auto normalize(const GenericVector<TVec>& v)
{
return v / accumulate(v.top(), operations::add());
}
// normalize a matrix rowwise
template <typename TMatrix>
static
Matrix<Rational> normalize(const GenericMatrix<TMatrix, Rational>& m)
{
Matrix<Rational> result(m);
for (auto v = entire(rows(result)); !v.at_end(); ++v) {
*v /= accumulate(*v, operations::add());
}
return result;
}
Set<Vector<Rational>> coneRays() const;
// check if the facet is a potential candidate to flip the corresponding edges in the triangulation of the surface
// we exclude the far facet ( 1 : 0 : ... : 0 ) and the coordinate hyperplanes ( 0 : ... : 1 : 0 : ... : 0 ) as well as ( 0 : ... : 0 )
template <typename TVec>
static bool validFacet(const GenericVector<TVec, Rational>& facet_normal)
{
return nonZeros(facet_normal) > 1;
}
template <typename TVec>
static Int nonZeros(const GenericVector<TVec>& facet_normal)
{
Int non_zeros = 0;
for (auto it = entire(facet_normal.top()); !it.at_end(); ++it)
if (!is_zero(*it)) ++non_zeros;
return non_zeros;
}
// flip the edges of the given indices and in the given order: false = [left->right], true = [right->left]
// return the flip_sequence, where possible former flips are included if given as optional input
flip_sequence flipEdges_and_give_flips(const flip_sequence& edgeIds, flip_sequence former_flips = flip_sequence(), bool reverse = false);
// flip the edges of the given indices and in the given order: false = [left->right], true = [right->left]
void flipEdges(const flip_sequence& edgeIds, bool reverse = false);
// we flip those edges whose inequalities are equivalent to the facet normal until the there is no such edge, we only flip through valid facets
flip_sequence flipThroughFace(const Vector<Rational>& facet_normal, flip_sequence former_flips = flip_sequence());
// return the index of the first Delaunay inequality matrix that is equivalent to the given inequality "ineq"; return -1 if there is no such row
Int first_equiv_row(const Vector<Rational>& ineq) const;
// return true if the two vectors define the same non-degenerate half space
bool is_equiv(const Vector<Rational>& ineq_a, const Vector<Rational>& ineq_b) const;
// check if the the edge with index id is Delaunay after scaling the horocycles by the weights
bool is_Delaunay(Int id, const Vector<Rational>& weights) const;
// check if the triangulation is Delaunay w.r.t. the given weights, return id of the first edge that is not Delaunay or -1 if the triangulation is Delaunay
Int is_Delaunay(const Vector<Rational>& weights) const;
Vector<Int> DelaunayConditions(const Vector<Rational>& weights) const;
// the flip algorithm, we flip edges that are non-Delaunay w.r.t. the weights as long as there are some
flip_sequence flipToDelaunayAlt(const Vector<Rational>& weights);
// return the angle sum of the vertex of index id
Rational angleSum(Int id) const;
// return the angle sum vector
Vector<Rational> angleVector() const;
// each face gets a new index = face_id + numHalfEdges
// the triangleMap maps each edge_id to the index of its corresponding face
const Map<Int, Int> triangleMap() const;
template<typename ptr>
void print_id_if_not_null(std::ostringstream& bos, const ptr* p, bool comma) const {
if(p != nullptr) wrap(bos) << p->getID();
else wrap(bos) << "NULL";
if(comma) wrap(bos) << " ";
}
void debug_print() const {
std::ostringstream bos;
wrap(bos) << "VERTICES (incidentEdge)" << endl;
for(const auto& vertex : vertices){
wrap(bos) << vertex.getID() << ": ";
print_id_if_not_null(bos, vertex.getIncidentEdge(), true);
bos << endl;
}
wrap(bos) << "HALFEDGES" << endl;
wrap(bos) << to_string();
wrap(bos) << "FACES (half_edge)" << endl;
for(const auto& face : faces){
wrap(bos) << face.getID() << ": ";
print_id_if_not_null(bos, face.getHalfEdge(), true);
bos << endl;
}
cout << bos.str() << endl;
}
std::string to_string() const {
std::ostringstream bos;
wrap(bos) << "N_vertices: " << getNumVertices() << endl;
if(with_faces){
wrap(bos) << "Halfedges list: (edgeIndex: twinIndex nextIndex prevIndex headIndex faceIndex)" << endl;
} else {
wrap(bos) << "Halfedges list: (edgeIndex: twinIndex nextIndex prevIndex headIndex)" << endl;
}
for(const auto& he : halfedges){
wrap(bos) << he.getID() << ": ";
print_id_if_not_null(bos, he.getTwin(), true);
print_id_if_not_null(bos, he.getNext(), true);
print_id_if_not_null(bos, he.getPrev(), true);
print_id_if_not_null(bos, he.getHead(), true);
if(with_faces){
print_id_if_not_null(bos, he.getFace(), true);
}
wrap(bos) << "(";
if(he.getPrev() != nullptr) print_id_if_not_null(bos, he.getPrev()->getHead(), false);
else wrap(bos) << "NOPREV";
wrap(bos) << " ---> ";
print_id_if_not_null(bos, he.getHead(), false);
wrap(bos) << ")";
wrap(bos) << "" << endl;
}
return bos.str();
}
template <typename Output> friend
Output& operator<< (GenericOutput<Output>& out, const DoublyConnectedEdgeList& me)
{
out.top() << me.to_string();
return out.top();
}
}; // end class DoublyConnectedEdgeList
} // namespace dcel
} // end graph namespace
} // end polymake namespace
namespace pm{
template<>
struct spec_object_traits< Serialized< polymake::graph::dcel::DoublyConnectedEdgeList > > :
spec_object_traits<is_composite> {
typedef polymake::graph::dcel::DoublyConnectedEdgeList masquerade_for;
typedef Matrix<Int> elements;
template <typename Me, typename Visitor>
static void visit_elements(Me& me, Visitor& v) //for data_load
{
v << me.matrix_representation;
me.resize();
me.populate();
}
template <typename Visitor>
static void visit_elements(const pm::Serialized<masquerade_for>& me, Visitor& v) //for data_save
{
me.toMatrixInt();
v << me.matrix_representation;
}
};
}
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|