1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/graph/Lattice.h"
#include <algorithm>
namespace polymake { namespace graph {
/*
* A lattice which allows for deletion of nodes
* It is assumed that the top node is never deleted.
*/
template <typename Decoration, typename SeqType = lattice::Nonsequential>
class ShrinkingLattice : public Lattice<Decoration, SeqType> {
protected:
// returns 1 + the maximal rank of a node connected to the top node
Int implicit_top_rank() const
{
return accumulate( attach_member_accessor(
select(this->D, this->in_adjacent_nodes(this->top_node())),
ptr2type<Decoration, Int, &Decoration::rank>()), operations::max())+1;
}
public:
// Copy constructor
ShrinkingLattice() : Lattice<Decoration,SeqType>() {}
ShrinkingLattice(const Lattice<Decoration, SeqType>& l) : Lattice<Decoration, SeqType>(l) {}
void delete_node(Int n)
{
this->G.delete_node(n);
}
template <typename TSet>
void delete_nodes(const GenericSet<TSet, Int> &nlist)
{
for (auto n_it : nlist.top()) delete_node(n_it);
}
void clear()
{
this->G.clear();
}
struct node_exists_pred {
const Graph<Directed>* G;
node_exists_pred() : G(nullptr) {}
node_exists_pred(const Graph<Directed>& G_arg) : G(&G_arg) {}
typedef Int argument_type;
typedef bool result_type;
result_type operator() (Int n) const { return G->node_exists(n); }
};
auto nodes_of_rank(Int d) const
{
return attach_selector(this->rank_map.nodes_of_rank(d), node_exists_pred(this->G));
}
auto nodes_of_rank_range(Int d1, Int d2) const
{
return attach_selector(this->rank_map.nodes_of_rank_range(d1,d2), node_exists_pred(this->G));
}
void set_implicit_top_rank()
{
this->D[this->top_node()].rank = implicit_top_rank();
}
};
} }
|