1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/GenericGraph.h"
#include "polymake/Bitset.h"
#include "polymake/ContainerChain.h"
#include "polymake/vector"
#include "polymake/meta_list.h"
#include <deque>
#include <cassert>
namespace polymake { namespace graph {
template <bool TInversed=false>
class NodeVisitor {
protected:
Bitset visited;
public:
static const bool visit_all_edges=false;
NodeVisitor() = default;
template <typename TGraph>
NodeVisitor(const GenericGraph<TGraph>& G)
: visited(G.top().dim())
{
clear(G);
}
template <typename TGraph>
void clear(const GenericGraph<TGraph>& G)
{
if (TInversed) {
if (G.top().has_gaps())
visited=nodes(G);
else
visited=sequence(0, G.top().dim());
} else {
visited.clear();
}
}
bool operator()(Int n)
{
return operator()(n, n);
}
bool operator()(Int n_from, Int n_to)
{
if (TInversed == visited.contains(n_to)) {
if (TInversed)
visited-=n_to;
else
visited+=n_to;
return true;
}
return false;
}
const Bitset& get_visited_nodes() const { return visited; }
};
/// storage for and actions on visited nodes
template <typename> class VisitorTag;
/// how to traverse a directed graph:
/// 1 = follow the edges as is
/// -1 = follow reversed edges
/// 0 = follow all incident adges regardless of their direction
template <typename> class TraversalDirectionTag;
/// DFS only: whether to expose the parent (root) node before its children (leaves)
template <typename> class VisitParentFirstTag;
template <typename TGraph, typename... TParams>
class graph_iterator_base {
public:
typedef typename mlist_wrap<TParams...>::type params;
typedef TGraph graph_t;
typedef typename mtagged_list_extract<params, VisitorTag, NodeVisitor<> >::type visitor_t;
typedef typename std::conditional<TGraph::is_directed,
typename mtagged_list_extract<params, TraversalDirectionTag, int_constant<1>>::type,
int_constant<1>>::type traverse_edges;
typedef std::forward_iterator_tag iterator_category;
typedef Int value_type;
typedef const Int& reference;
typedef const Int* pointer;
typedef ptrdiff_t difference_type;
const visitor_t& node_visitor() const { return visitor; }
visitor_t& node_visitor_mutable() { return visitor; }
protected:
graph_iterator_base()
: graph(nullptr) {}
explicit graph_iterator_base(const graph_t& graph_arg)
: graph(&graph_arg)
, visitor(graph_arg)
, undiscovered(graph->nodes()) {}
graph_iterator_base(const graph_t& graph_arg, visitor_t&& visitor_arg)
: graph(&graph_arg)
, visitor(std::move(visitor_arg))
, undiscovered(graph->nodes()) {}
decltype(auto) edges(Int n, int_constant<1>) const
{
return graph->out_edges(n);
}
decltype(auto) edges(Int n, int_constant<-1>) const
{
return graph->in_edges(n);
}
decltype(auto) edges(Int n, int_constant<0>) const
{
return concatenate(graph->out_edges(n), graph->in_edges(n));
}
public:
decltype(auto) edges(Int n) const
{
return entire(edges(n, traverse_edges()));
}
/// get the number of nodes which haven't been touched so far
Int undiscovered_nodes() const { return undiscovered; }
protected:
void reset()
{
visitor.clear(*graph);
undiscovered=graph->nodes();
}
template <typename TEdgeIterator>
static
Int from_node(const TEdgeIterator& e, int_constant<1>)
{
return e.from_node();
}
template <typename TEdgeIterator>
static
Int from_node(const TEdgeIterator& e, int_constant<-1>)
{
return e.to_node();
}
template <typename TEdgeIterator>
static
Int to_node(const TEdgeIterator& e, int_constant<1>)
{
return e.to_node();
}
template <typename TEdgeIterator>
static
Int to_node(const TEdgeIterator& e, int_constant<-1>)
{
return e.from_node();
}
template <typename TEdgeIterator>
static
Int from_node(const TEdgeIterator& e, int_constant<0>)
{
return e.get_leg()==0
? std::get<0>(e.get_it_tuple()).from_node()
: std::get<1>(e.get_it_tuple()).to_node();
}
template <typename TEdgeIterator>
static
Int to_node(const TEdgeIterator& e, int_constant<0>)
{
return e.get_leg()==0
? std::get<0>(e.get_it_tuple()).to_node()
: std::get<1>(e.get_it_tuple()).from_node();
}
template <typename TEdgeIterator>
static
Int from_node(const TEdgeIterator& e)
{
return from_node(e, traverse_edges());
}
template <typename TEdgeIterator>
static
Int to_node(const TEdgeIterator& e)
{
return to_node(e, traverse_edges());
}
template <typename TEdgeIterator>
static
std::false_type probe_visitor(const TEdgeIterator& e, decltype(std::declval<visitor_t&>()(e.from_node(), e.to_node())));
template <typename TEdgeIterator>
static
std::true_type probe_visitor(const TEdgeIterator& e, decltype(std::declval<visitor_t&>()(e.from_node(), e.to_node(), *e)));
typedef decltype(probe_visitor(entire(std::declval<graph_t>().out_edges(0)), true)) visitor_needs_edge;
template <typename TEdgeIterator>
typename std::enable_if<visitor_needs_edge::value, typename mproject2nd<TEdgeIterator, bool>::type>::type
visit_edge(Int n_from, Int n_to, const TEdgeIterator& e)
{
return visitor(n_from, n_to, *e);
}
template <typename TEdgeIterator>
typename std::enable_if<!visitor_needs_edge::value, typename mproject2nd<TEdgeIterator, bool>::type>::type
visit_edge(Int n_from, Int n_to, const TEdgeIterator& e)
{
return visitor(n_from, n_to);
}
const graph_t *graph;
visitor_t visitor;
Int undiscovered;
};
template <typename TGraph, typename... TParams>
class BFSiterator
: public graph_iterator_base<TGraph, TParams...> {
using base_t = graph_iterator_base<TGraph, TParams...>;
public:
using typename base_t::visitor_t;
using typename base_t::reference;
using queue_t = std::deque<Int>;
using iterator = BFSiterator;
using const_iterator = BFSiterator;
BFSiterator() = default;
explicit BFSiterator(const GenericGraph<TGraph>& graph_arg)
: base_t(graph_arg.top()) {}
BFSiterator(const GenericGraph<TGraph>& graph_arg, visitor_t&& visitor_arg)
: base_t(graph_arg.top(), std::move(visitor_arg)) {}
BFSiterator(const GenericGraph<TGraph>& graph_arg, Int start_node)
: base_t(graph_arg.top())
{
process(start_node);
}
BFSiterator(const GenericGraph<TGraph>& graph_arg, visitor_t&& visitor_arg, Int start_node)
: base_t(graph_arg.top(), std::move(visitor_arg))
{
process(start_node);
}
/// get the current node
reference operator* () const { return queue.front(); }
/// add the neighbors of the current node to the search front, then switch to the next node
iterator& operator++ ()
{
const Int n = queue.front(); queue.pop_front();
if (visitor_t::visit_all_edges || this->undiscovered != 0)
propagate(n, this->edges(n));
return *this;
}
const iterator operator++ (int) { iterator copy(*this); operator++(); return copy; }
/// switch to the next node without visiting neighbors of the current one
void skip_node() { queue.pop_front(); }
const queue_t& get_queue() const { return queue; }
bool at_end() const { return queue.empty(); }
bool operator== (const iterator& it) const
{
return at_end() ? it.at_end() : !it.at_end() && queue.front()==it.queue.front();
}
bool operator!= (const iterator& it) const { return !operator==(it); }
/// restore the initial state of the iterator, make all nodes undiscovered
void reset(Int start_node)
{
base_t::reset();
restart(start_node);
}
/// empty the queue, make the given node the current one
void restart(Int n)
{
queue.clear();
process(n);
}
/// make the given node the current one without clearing the visited state of any nodes
/// and preserving the queue.
void process(Int n)
{
if (const Int dim = this->graph->dim()) {
if (POLYMAKE_DEBUG) {
if (n < 0 || n >= dim)
throw std::runtime_error("BFSiterator - start node out of range");
}
if (this->visitor(n)) {
queue.push_back(n);
--this->undiscovered;
}
}
}
protected:
template <typename TEdgeIterator>
void propagate(Int n, TEdgeIterator&& e)
{
for (; !e.at_end(); ++e) {
const Int to_n = this->to_node(e);
if (this->visit_edge(n, to_n, e)) {
queue.push_back(to_n);
--this->undiscovered;
}
}
}
queue_t queue;
};
template <typename TGraph, typename... TParams>
class DFSiterator
: public graph_iterator_base<TGraph, TParams...> {
using base_t = graph_iterator_base<TGraph, TParams...>;
public:
using typename base_t::visitor_t;
using typename base_t::reference;
using typename base_t::params;
static const bool visit_parent_first=tagged_list_extract_integral<params, VisitParentFirstTag>(false);
using iterator = DFSiterator;
using const_iterator = DFSiterator;
DFSiterator()
: cur(-1) {}
explicit DFSiterator(const GenericGraph<TGraph>& graph_arg)
: base_t(graph_arg.top())
, cur(-1) {}
DFSiterator(const GenericGraph<TGraph>& graph_arg, visitor_t&& visitor_arg)
: base_t(graph_arg.top(), std::move(visitor_arg))
, cur(-1) {}
DFSiterator(const GenericGraph<TGraph>& graph_arg, Int start_node)
: base_t(graph_arg.top())
, cur(-1)
{
process(start_node);
}
DFSiterator(const GenericGraph<TGraph>& graph_arg, visitor_t&& visitor_arg, Int start_node)
: base_t(graph_arg.top(), std::move(visitor_arg))
, cur(-1)
{
process(start_node);
}
reference operator* () const { return cur; }
iterator& operator++ ()
{
if (visit_parent_first) {
it_stack.push_back(this->edges(cur));
propagate();
} else {
cur=predecessor();
if (cur >= 0) {
++it_stack.back();
descend();
}
}
return *this;
}
const iterator operator++ (int) { iterator copy(*this); operator++(); return copy; }
void skip_node()
{
assert(visit_parent_first && !it_stack.empty());
++it_stack.back();
propagate();
}
bool at_end() const { return cur<0; }
bool operator== (const iterator& it) const { return cur==it.cur; }
bool operator!= (const iterator& it) const { return !operator==(it); }
/// restore the initial state of the iterator, make all nodes undiscovered
void reset(Int start_node)
{
base_t::reset();
restart(start_node);
}
/// empty the stack, start from the given node
void restart(Int n)
{
it_stack.clear();
process(n);
}
void process(Int n)
{
if (const Int dim = this->graph->dim()) {
if (POLYMAKE_DEBUG) {
if (n < 0 || n >= dim)
throw std::runtime_error("DFSiterator - start node out of range");
}
if (this->visitor(n)) {
cur = n;
--this->undiscovered;
if (!visit_parent_first) {
it_stack.push_back(this->edges(n));
descend();
}
}
}
}
using edge_iterator = decltype(std::declval<base_t>().edges(0));
using it_stack_t = std::deque<edge_iterator>;
const it_stack_t& get_stack() const { return it_stack; }
Int predecessor() const { return it_stack.empty() ? -1 : base_t::from_node(it_stack.back()); }
protected:
void descend()
{
while (!it_stack.back().at_end()) {
edge_iterator& e = it_stack.back();
const Int to_n = this->to_node(e);
if (!is_back_edge(to_n) && this->visit_edge(cur, to_n, e)) {
cur = to_n;
--this->undiscovered;
it_stack.push_back(this->edges(to_n));
} else {
++e;
}
}
it_stack.pop_back();
}
void propagate()
{
for (;; ++it_stack.back()) {
edge_iterator& e = it_stack.back();
if (!e.at_end()) {
const Int to_n = this->to_node(e);
if (!is_back_edge(to_n) && this->visit_edge(cur, to_n, e)) {
cur = to_n;
--this->undiscovered;
break;
}
} else {
it_stack.pop_back();
if (it_stack.empty()) {
cur = -1;
break;
}
}
}
}
bool is_back_edge(Int n) const
{
if (!visitor_t::visit_all_edges || TGraph::is_directed) return false;
const Int s = it_stack.size();
return s >= 2 && base_t::from_node(it_stack[s-2]) == n;
}
it_stack_t it_stack;
Int cur;
};
class TopologicalSortVisitor
{
public:
static const bool visit_all_edges=true;
TopologicalSortVisitor()
: max_rank(0) {}
template <typename TGraph>
TopologicalSortVisitor(const GenericGraph<TGraph>& G)
: rank(G.top().dim(), 0)
, max_rank(G.top().nodes()) {}
template <typename TGraph>
void clear(const GenericGraph<TGraph>& G)
{
std::fill(rank.begin(), rank.end(), 0);
}
bool operator()(Int n)
{
if (rank[n] == 0) {
rank[n] = max_rank;
return true;
}
return false;
}
bool operator()(Int n_from, Int n_to)
{
if (rank[n_to] == 0) {
rank[n_to] = max_rank;
return true;
}
propagate_back(n_from, n_to);
return false;
}
void propagate_back(Int n_from, Int n_to)
{
assign_min(rank[n_from], rank[n_to]-1);
}
const std::vector<Int>& get_ranks() const { return rank; }
std::vector<Int>& get_ranks() { return rank; }
private:
std::vector<Int> rank;
Int max_rank;
};
template <typename TGraph, typename = std::enable_if_t<TGraph::is_directed>>
std::pair<std::vector<Int>, Int> topological_sort(const GenericGraph<TGraph>& G)
{
Int min_rank = G.top().nodes();
if (min_rank <= 1) return { std::vector<Int>(min_rank, 1), min_rank };
DFSiterator<TGraph, VisitorTag<TopologicalSortVisitor>> search_it(G.top());
std::vector<Int>& ranks = search_it.node_visitor_mutable().get_ranks();
for (auto nodes_it=entire(nodes(G)); !nodes_it.at_end(); ) {
for (search_it.restart(*nodes_it); !search_it.at_end(); ++search_it) {
const Int n_pred = search_it.predecessor();
if (n_pred >= 0)
search_it.node_visitor_mutable().propagate_back(n_pred, *search_it);
else
assign_min(min_rank, ranks[*search_it]);
}
if (search_it.undiscovered_nodes()) {
do {
++nodes_it;
assert(!nodes_it.at_end());
} while (ranks[*nodes_it] != 0);
} else {
break;
}
}
return { std::move(ranks), min_rank };
}
template <typename TGraph, typename=typename std::enable_if<TGraph::is_directed>::type>
bool is_totally_ordered(const GenericGraph<TGraph>& G)
{
return topological_sort(G).second <= 1;
}
} }
namespace pm {
template <typename TGraph, typename... TParams>
struct check_iterator_feature<polymake::graph::BFSiterator<TGraph, TParams...>, end_sensitive> : std::true_type {};
template <typename TGraph, typename... TParams>
struct check_iterator_feature<polymake::graph::DFSiterator<TGraph, TParams...>, end_sensitive> : std::true_type {};
}
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|