File: matchings.h

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (233 lines) | stat: -rw-r--r-- 7,115 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once

#include "polymake/Graph.h"
#include "polymake/Array.h"
#include "polymake/Set.h"
#include "polymake/graph/graph_iterators.h"
#include "polymake/graph/hungarian_method.h"

// TODO better representation for cycle

namespace polymake { namespace graph {

// This implementation for finding all perfect matchings in a bipartite graph
// broadly follows the algorithm described in the paper:
//
// Takeaki UNO - Algorithms for Enumerating All Perfect, Maximum and Maximal
// Matchings in Bipartite Graphs

class PerfectMatchings {
protected:
   Graph<Directed> D;
   Int dim;
   Set<Array<Int>> matchings;

   class CycleVisitor;

public:
   PerfectMatchings(const Graph<Undirected>& graph, const Array<Int>& M)
      : dim(graph.nodes()/2)
   {
      // some sanity checks first:
      if (graph.nodes()%2 != 0)
         throw std::runtime_error("Graph has odd number of nodes.");
      if (graph.has_gaps())
         throw std::runtime_error("Graph has gaps."); // TODO squeeze() instead?
      for (Int i = 0; i < dim; ++i) {
         for (auto n = entire(graph.adjacent_nodes(i)); !n.at_end(); ++n) {
            if (*n < dim)
               throw std::runtime_error("Graph not bipartite of the form {0..n-1}U{n..2n-1}.");
         }
         for (auto n = entire(graph.adjacent_nodes(i+dim)); !n.at_end(); ++n) {
            if (*n >= dim)
               throw std::runtime_error("Graph not bipartite of the form {0..n-1}U{n..2n-1}.");
         }
      }
      for (Int i = 0; i < M.size(); ++i) {
         if (!graph.edge_exists(M[i] + dim, i))
            throw std::runtime_error("M not a matching of the given graph.");
      }
      if (M.size() != dim)
         throw std::runtime_error("Matching not perfect.");

      // build D(G,M):
      Graph<Directed> dirgraph(graph.nodes());
      for (Int i = 0; i < dim; i++) {
         for (auto n = entire(graph.adjacent_nodes(i)); !n.at_end(); ++n) {
            if (M[i] + dim == *n)
               dirgraph.add_edge(*n, i);
            else
               dirgraph.add_edge(i, *n);
         }
      }
      D = dirgraph;
   }

   Set<Array<Int>> get_matchings()
   {
      collect_matchings(D);
      return matchings;
   }

protected:
   class CycleVisitor : public NodeVisitor<> {
      using base_t = NodeVisitor<> ;
   public:
      bool cycle_found;
      std::vector<Int> cycle;
   protected:
      std::vector<Int> parent; // encodes the search tree
      std::vector<Int> child;
      Set<Int> path_set; // nodes of the current branch of the search tree
      Int path_head;
   public:
      CycleVisitor() {}
      CycleVisitor(const Graph<Directed>& Din)
         : base_t(Din)
         , cycle_found(false)
         , cycle(Din.dim(), -1)
         , parent(Din.dim(), -1)
         , child(Din.dim(), -1)
         , path_set()
         , path_head(-1)
      {}
      void clear(const Graph<Directed>&) {}
      bool operator() (Int start_node)
      {
         if (cycle_found)
            return false;
         visited += start_node;
         path_set.clear();
         path_set += start_node;
         path_head = start_node;
         return true;
      }
      bool operator() (Int n_from, Int n_to)
      {
         if (cycle_found)
            return false;
         if (path_set.contains(n_to) && path_head == n_from) { // cycle found
            cycle[0] = n_to;
            for (Int i = n_to, k = 1; i != n_from; i = child[i], k++) {
               cycle[k] = child[i];
            }
            cycle_found = true;
            return false;
         } else if (visited.contains(n_to)) {
            return false;
         } else {
            while (path_head != n_from) { // deal with (potential) branching in the search tree
               path_set -= path_head;
               path_head = parent[path_head];
            }
            path_set += n_to;
            path_head = n_to;
         }

         parent[n_to] = n_from;
         child[n_from] = n_to;
         visited += n_to;

         return true;
      }
   };

   std::vector<Int> find_cycle(const Graph<Directed>& graph)
   {
      DFSiterator<Graph<Directed>, VisitorTag<CycleVisitor>> iter(graph);
      for (Int i = 0; i < dim; ++i) { // dfs per strongly connected component
         if (iter.node_visitor().get_visited_nodes().contains(i))
            continue;
         iter.reset(i);
         while (!iter.at_end()) {
            ++iter;
            if (iter.node_visitor().cycle_found) {
               return iter.node_visitor().cycle;
            }
         }
      }
      return std::vector<Int>();
   }

   Graph<Directed> augment(const Graph<Directed>& graph, std::vector<Int> cycle)
   {
      Graph<Directed> G(graph);
      for (Int i = 0; i < Int(cycle.size()) && cycle[i] >= 0; ++i) {
         Int n_to = i+1 < Int(cycle.size()) && cycle[i+1] >= 0 ? cycle[i+1] : cycle[0];
         G.delete_edge(cycle[i], n_to);
         G.add_edge(n_to, cycle[i]);
      }
      return G;
   }

   Array<Int> extract_matching(const Graph<Directed>& graph)
   {
      Array<Int> matching(dim, -1);
      for (Int i = 0; i < dim; ++i)
         matching[i] = graph.in_adjacent_nodes(i).front() - dim;
      return matching;
   }

   void collect_matchings(const Graph<Directed>& graph)
   {
      // TODO trim unnecessary edges

      std::vector<Int> c = find_cycle(graph);

      if (c.empty()) {
         matchings += extract_matching(graph);
      } else {
         // choose matching edge:
         Int start_index = c[0] > c[1] ? 0 : 1;
         std::pair<Int, Int> e(c[start_index], c[start_index+1]);

         // build graph G1 = G\(E-adjacent edges):
         Graph<Directed> g1(graph);
         Int tmp;
         for (auto n = entire(g1.in_adjacent_nodes(e.first)); !n.at_end();) {
            tmp = *n;
            ++n;
            g1.delete_edge(tmp, e.first);
         }
         for (auto n = entire(g1.out_adjacent_nodes(e.second)); !n.at_end();) {
            tmp = *n;
            ++n;
            g1.delete_edge(e.second, tmp);
         }

         // build graph G2 = augment(G)\E:
         Graph<Directed> g2(augment(graph, c));
         g2.delete_edge(e.second, e.first);

         collect_matchings(g1);
         collect_matchings(g2);
      }
   }
};

} }


// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
// vim:shiftwidth=3:softtabstop=3: