1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
REQUIRE_EXTENSION bundled:graph_compare
CREDIT graph_compare = bundled:graph_compare
# @category Comparing
# true if //IncidenceMatrix1// and //IncidenceMatrix2// are isomorphic.
# @param IncidenceMatrix IncidenceMatrix1
# @param IncidenceMatrix IncidenceMatrix2
# @return Bool
# @depends bliss or nauty
# @example [application polytope]
# Compare the incidence matrices of the 2-dimensional cube and cross polytope:
# > $I1 = cube(2)->VERTICES_IN_FACETS;
# > $I2 = cross(2)->VERTICES_IN_FACETS;
# > print isomorphic($I1,$I2);
# | true
user_function isomorphic(IncidenceMatrix, IncidenceMatrix) : c++ (include => "polymake/graph/compare.h");
# @category Comparing
# true if //graph1// and //graph2// are isomorphic.
# @param GraphAdjacency graph1
# @param GraphAdjacency graph2
# @return Bool
# @depends bliss or nauty
# @example [application polytope]
# Compare the vertex-edge graph of the square with the cycle graph on 4 nodes:
# > $g1 = cube(2)->GRAPH->ADJACENCY;
# > $g2 = cycle_graph(4)->ADJACENCY;
# > print isomorphic($g1,$g2);
# | true
user_function isomorphic(GraphAdjacency, GraphAdjacency) : c++ (include => "polymake/graph/compare.h");
# @category Comparing
# Find the node permutation mapping //graph1// to //graph2//.
# @param GraphAdjacency graph1
# @param GraphAdjacency graph2
# @return Array<Int> permutation of node indexes, or undef if graphs are not isomorphic
# @depends bliss or nauty
user_function find_node_permutation(GraphAdjacency, GraphAdjacency) : c++ (include => "polymake/graph/compare.h");
# @category Comparing
# Find the permutations mapping the non-symmetric incidence matrix //m1// to //m2//.
# @param IncidenceMatrix<NonSymmetric> m1
# @param IncidenceMatrix<NonSymmetric> m2
# @return Pair<Array<Int>,Array<Int>> ''first'' permutation applied to the rows, ''second'' applied to the columns,
# or undef if matrices are not isomorphic
# @depends bliss or nauty
# @example
# > $m1 = new IncidenceMatrix([1,2],[5,3]);
# > $m2 = new IncidenceMatrix([4,3],[1,5]);
# > print find_row_col_permutation($m1,$m2);
# | <1 0> <0 1 4 3 5 2>
user_function find_row_col_permutation(IncidenceMatrix<NonSymmetric>, IncidenceMatrix<NonSymmetric>) \
: c++ (include => "polymake/graph/compare.h");
# @category Comparing
# Find the automorphism group of the graph.
# @param GraphAdjacency graph
# @return Array<Array<Int>> each element encodes a node permutation.
# @depends bliss or nauty
# @example [application polytope]
# We first create the vertex-edge graph of the square and then print its automorphism group:
# > $g=new GraphAdjacency(cube(2)->GRAPH->ADJACENCY);
# > print automorphisms($g);
# | 0 2 1 3
# | 1 0 3 2
# These two permutations generate the group of all node permutations
# that preserve vertex-edge connectivity.
user_function automorphisms(GraphAdjacency) : c++ (include => "polymake/graph/compare.h");
function automorphisms(GraphAdjacency, *) : c++ (include => "polymake/graph/compare.h");
# @category Comparing
# Find the order of the automorphism group of the graph.
# @param GraphAdjacency graph
# @return Int the order of the automorphism group
# @depends bliss or nauty
# @example
# > print n_automorphisms(cycle_graph(5)->ADJACENCY);
# | 2
user_function n_automorphisms(GraphAdjacency) : c++ (include => "polymake/graph/GraphIso.h");
# @category Comparing
# Find the automorphism group of the non-symmetric incidence matrix.
# @param IncidenceMatrix<NonSymmetric> m
# @return Array<Pair<Array<Int>,Array<Int>>> each element encodes a permutation of its rows (''first'') and columns (''second'').
# @depends bliss or nauty
# @example [application polytope]
# The group of combinatorial automorphisms of the 3-cube coincides with
# the group of (bipartite) graph automorphisms of the vertex/facet incidences.
# To print this group, type this:
# > print automorphisms(cube(3)->VERTICES_IN_FACETS);
# | (<0 1 4 5 2 3> <0 1 4 5 2 3 6 7>)
# | (<2 3 0 1 4 5> <0 2 1 3 4 6 5 7>)
# | (<1 0 2 3 4 5> <1 0 3 2 5 4 7 6>)
# This means that the group is generated by three elements, one per line in the output.
# Each is written as a pair of permutations. The first gives the action on the facets,
# the second the action on the vertices.
user_function automorphisms(IncidenceMatrix<NonSymmetric>) : c++ (include => "polymake/graph/compare.h");
# @category Comparing
# Find the automorphism group of the symmetric incidence matrix.
# @param IncidenceMatrix<Symmetric> m
# @return Array<Array<Int>> each element encodes a permutation of its rows (=columns).
# @depends bliss or nauty
user_function automorphisms(IncidenceMatrix<Symmetric>) : c++ (include => "polymake/graph/compare.h");
# @category Comparing
# Find a canonical representation of a graph //g//.
# Warning: This representation can depend on the extension (bliss/nauty) used, its version and configuration, as well as the hardware!
# @param GraphAdjacency g
# @return GraphAdjacency
# @depends bliss or nauty
user_function canonical_form(GraphAdjacency) : c++ (include => "polymake/graph/compare.h");
# @category Comparing
# Compute a hash for a graph //g// independent of the node ordering.
# Warning: This hash can depend on the extension (bliss/nauty) used, its version and configuration, as well as the hardware!
# Nauty requires an integer key //k// as input, bliss will ignore the key.
# @param GraphAdjacency g
# @param Int k a key for the hash computation, default value 2922320
# @return Int
# @depends bliss or nauty
user_function canonical_hash(GraphAdjacency; $=2922320) : c++ (include => "polymake/graph/compare.h");
# @category Comparing
# Compute a hash for an incidence matrix //I// independent of the row ordering.
# Warning: This hash can depend on the extension (bliss/nauty) used, its version and configuration, as well as the hardware!
# Nauty requires an integer key //k// as input, bliss will ignore the key.
# @param IncidenceMatrix M
# @param Int k a key for the hash computation, default value 2922320
# @return Int
# @depends bliss or nauty
user_function canonical_hash(IncidenceMatrix; $=2922320) : c++ (include => "polymake/graph/compare.h");
object Graph {
# @notest Rule defined "in stock" - currently without use
rule NodePerm.PERMUTATION : NodePerm.ADJACENCY, ADJACENCY {
$this->NodePerm->PERMUTATION = find_node_permutation($this->NodePerm->ADJACENCY, $this->ADJACENCY)
// die "no permutation";
}
weight 5.10;
}
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|