File: mcf.rules

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (111 lines) | stat: -rw-r--r-- 3,705 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#  Copyright (c) 1997-2024
#  Ewgenij Gawrilow, Michael Joswig, and the polymake team
#  Technische Universität Berlin, Germany
#  https://polymake.org
#
#  This program is free software; you can redistribute it and/or modify it
#  under the terms of the GNU General Public License as published by the
#  Free Software Foundation; either version 2, or (at your option) any
#  later version: http://www.gnu.org/licenses/gpl.txt.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#-------------------------------------------------------------------------------
CREDIT mcf
  Network simplex algorithm for minimum cost flows.
  Copyright by Andreas Löbel & ZIB.
  https://www.zib.de/opt-long_projects/Software/Mcf/

# path to the mcf executable
custom $mcf;

CONFIGURE {
   find_program($mcf, "mcf") or return;
}

# For executing code only when mcf is available
label mcf

prefer mcf.otp

# Computes optimal transport plan of a transportation problem.
# Comment what mcf types are used.
# @param Matrix m-by-n matrix containing the transportation costs
# @param Vector m-vector containing the supply
# @param Vector n-vector containing the demand
# @return Matrix
user_function mcf.otp: optimal_transport_plan<Scalar>[Scalar == Int || Scalar == Float](Matrix<Scalar>, Vector<Scalar>, Vector<Scalar>) {
	my ($cost, $supply, $demand) = @_;
	my $m = $cost -> rows();
	my $n = $cost -> cols();
	my $scalarType = typeof Scalar;

	if ($supply -> dim != $m) {
		die "Error: The size of the supply vector does not match the number of rows of the cost matrix.";
	}
	if ($demand -> dim != $n) {
		die "Error: The size of the demand vector does not match the number of columns of the cost matrix.";
	}

	my $total_supply = new Scalar(0);
	for (my $i = 0; $i < $m; ++$i) {
		if ($supply -> [$i] <= 0) {
			die "Error: The supply must be postive.";
		}
		$total_supply += $supply -> [$i];
	}
	my $total_demand = new Scalar(0);
	for (my $i = 0; $i < $n; ++$i) {
		if ($demand -> [$i] <= 0) {
			die "Error: The demand must be positive.";
		}
		$total_demand += $demand -> [$i];
	}
	# if ($total_supply != $total_demand) {
	if ($scalarType -> equal -> ($total_supply, $total_demand) == false) {
		die "Error: The total supply differs from the total demand.";
	}

	my $tempname = new Tempfile;
	open my $filePipe, ">", "$tempname.in";
	print $filePipe "p min ".($m+$n)." ".($m*$n)."\n";
	for (my $i = 0; $i < $m; ++$i) {
		print $filePipe "n ".($i+1)." ".($supply -> [$i])."\n";
	}
	for (my $i = 0; $i < $n; ++$i) {
		print $filePipe "n ".($i+$m+1)." -".($demand -> [$i])."\n";
	}
	for (my $i = 0; $i < $m; ++$i) {
		for (my $j = 0; $j < $n; ++$j) {
			print $filePipe "a ".($i+1)." ".($j+$m+1)." 0 free ".($cost -> elem($i, $j))."\n";
		}
	}
	close($filePipe);

	if ($Verbose::external) {
		dbg_print( "running mcf: $mcf -q -o -w $tempname.out $tempname.in" );
	}
	system("$mcf -q -o -w $tempname.out $tempname.in".(!$DebugLevel && " >/dev/null 2>&1"))
		and die "couldn't run mcf: $mcf -q -o -w $tempname.out $tempname.in\n";

	open(my $outfile, "<", "$tempname.out")
		or die "can't open output file $tempname.out: $!";

	my $A = new Matrix<Scalar>($m, $n);
	while (my $line = <$outfile>) {
		if ($line =~ /^f/) {
			if (typeof Scalar == typeof Int) {
				my ($from, $to, $flow) = ($line =~ /f (\d+) (\d+) (\d+)/);
				$A -> elem($from - 1, $to - $m - 1) = $flow;
			}
			else {
				my ($from, $to, $flow) = ($line =~ /f (\d+) (\d+) (\d+.\d+)/);
				$A -> elem($from - 1, $to - $m - 1) = $flow;
			}
		}
	}

	return $A;
}