1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
REQUIRE_APPLICATION polytope
# Computes optimal transport plan of a transportation problem.
# @param Matrix m-by-n matrix containing the transportation costs
# @param Vector m-vector containing the supply
# @param Vector n-vector containing the demand
# @return Matrix
user_function default.otp: optimal_transport_plan<Scalar>(Matrix<Scalar>, Vector<Scalar>, Vector<Scalar>) {
my ($cost, $supply, $demand) = @_;
my $m = $cost -> rows();
my $n = $cost -> cols();
if ($supply -> dim != $m) {
die "Error: The size of the supply vector does not match the number of rows of the cost matrix.";
}
if ($demand -> dim != $n) {
die "Error: The size of the demand vector does not match the number of columns of the cost matrix.";
}
my $total_supply = 0;
for (my $i = 0; $i < $m; ++$i) {
if ($supply -> [$i] <= 0) {
die "Error: The supply must be positive.";
}
$total_supply += $supply -> [$i];
}
my $total_demand = 0;
for (my $i = 0; $i < $n; ++$i) {
if ($demand -> [$i] <= 0) {
die "Error: The demand must be positive.";
}
$total_demand += $demand -> [$i];
}
if ($total_supply != $total_demand) {
die "Error: The total supply differs from the total demand.";
}
my $transPoly = new polytope::Polytope(polytope::transportation($supply, $demand));
my $C = new Vector<Scalar>([0]);
for (my $i = 0; $i < $m; ++$i) {
$C = $C | ($cost -> [$i]);
}
$transPoly -> LP(LINEAR_OBJECTIVE => $C);
my $transport_plan = new Matrix<Scalar>($m, $n);
for (my $i = 0; $i < $m; ++$i) {
for (my $j = 0; $j < $n; ++$j) {
$transport_plan -> elem($i, $j) = $transPoly -> LP -> MINIMAL_VERTEX -> [$i * $n + $j + 1];
}
}
return $transport_plan;
}
|