1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/group/group_tools.h"
#include "polymake/group/orbit.h"
#include "polymake/hash_set"
#include "polymake/linalg.h"
#include <fstream>
namespace polymake { namespace group {
/*
return a basis of the isotypic component corresponding to the given character.
Only rational characters are considered here, for performance reasons.
The basis is returned as an Array<hash_map<SparseSet, Rational>>.
The ordering of the rows in the basis is as they appear while processing the orbits of induced_orbit_representatives in lex order.
*/
template <typename SparseSet, typename NumericalType=Rational>
SparseIsotypicBasis<SparseSet>
sparse_isotypic_basis_impl(Int order,
const Array<Array<Int>>& original_generators,
const ConjugacyClasses<>& conjugacy_classes,
const Vector<Rational>& character,
const Array<SparseSet>& induced_orbit_representatives,
const std::string& filename = "")
{
const Rational c0_ord(character[0] / order);
std::ofstream outfile;
if (filename != "" && filename != "-")
outfile = std::ofstream(filename.c_str(), std::ios_base::trunc);
std::ostream& os = (filename == "-" ? perl::cout : outfile);
// for measured efficiency reasons, we once and for all allocate a SparseSet to receive permutations
SparseSet working_set(induced_orbit_representatives[0]);
working_set.clear();
/*
for each representative of an orbit of facets, we calculate the corresponding block
B = sum_{g in Gamma} chi_i(g) phi(g)
of the projection matrix.
*/
std::vector<SparseSimplexVector<SparseSet>> basis_hash_vectors;
for (const auto& orep: induced_orbit_representatives) {
// The rows and columns of B are indexed by the orbit of orep.
// One could make the orbit unordered and save the time spent ordering it, but then one would lose knowledge of what simplices rows and columns correspond to.
const auto face_orbit(orbit<on_container, Array<Int>, SparseSet>(original_generators, orep));
// index the orbit, and create constant-time access to indexed elements
hash_map<SparseSet, Int> index_of;
std::vector<SparseSet> face_orbit_indexed;
face_orbit_indexed.reserve(face_orbit.size());
Int index = -1;
for (const auto& f: face_orbit) {
index_of[f] = ++index;
face_orbit_indexed.push_back(f);
}
// make an explicit ListMatrix to keep track of the linear span achieved so far.
// Whenever a new row is added to the ListMatrix, append a corresponding SparseSimplexVector to basis_vectors.
ListMatrix<SparseVector<NumericalType>>
class_sparse_eqs(0, face_orbit.size()),
kernel_so_far(unit_matrix<NumericalType>(face_orbit.size()));
// for each potential new row of the block B, check if it is linearly independent from what is already there
for (const auto& f: face_orbit) {
/*
Each phi(g) is a permutation matrix.
For example, for the permutation (b,a,c) we get the matrix
a b c
1 a
1 b
1 c
Therefore, the row corresponding to f gets a contribution chi_i(g) in the column g(f), for all g in Gamma.
*/
SparseVector<NumericalType> new_sparse_eq(face_orbit.size());
for (Int i = 0; i<conjugacy_classes.size(); ++i) {
if (is_zero(character[i]))
continue;
for (const auto& g: conjugacy_classes[i]) {
group::permute_to(f.begin(), g, working_set);
new_sparse_eq[index_of[working_set]] += convert_to<NumericalType>(character[i]);
}
}
if (add_row_if_rowspace_increases(class_sparse_eqs, new_sparse_eq, kernel_so_far)) {
SparseSimplexVector<SparseSet> new_hash_eq;
for (auto eit = entire(new_sparse_eq); !eit.at_end(); ++eit) {
// multiply by chi_i(id)/|Gamma|
new_hash_eq[face_orbit_indexed[eit.index()]] = Rational(*eit) * c0_ord;
}
if (filename.size())
wrap(os) << new_hash_eq << endl;
else
basis_hash_vectors.push_back(new_hash_eq);
}
}
}
return SparseIsotypicBasis<SparseSet>(basis_hash_vectors);
}
template <typename SparseSet>
auto
sparse_isotypic_spanning_set_and_support_impl(Int order,
const Array<Array<Int>>& original_generators,
const ConjugacyClasses<>& conjugacy_classes,
const Vector<Rational>& character,
const Array<SparseSet>& induced_orbit_representatives,
const std::string& filename = "",
bool calculate_support = true)
{
std::vector<SparseSimplexVector<SparseSet>> spanning_hash_vectors;
hash_set<SparseSet> support;
const Rational c0_ord(character[0] / order);
std::ofstream outfile;
if (filename != "" && filename != "-")
outfile = std::ofstream(filename.c_str(), std::ios_base::trunc);
std::ostream& os = (filename == "-" ? perl::cout : outfile);
SparseSet working_set(induced_orbit_representatives[0]);
working_set.clear();
SparseSimplexVector<SparseSet> old_hash_eq;
for (const auto& orep: induced_orbit_representatives) {
for (const auto& f: orbit<on_container, Array<Int>, SparseSet>(original_generators, orep)) {
SparseSimplexVector<SparseSet> new_hash_eq;
for (Int i = 0; i < conjugacy_classes.size(); ++i) {
if (is_zero(character[i]))
continue;
for (const auto& g: conjugacy_classes[i]) {
group::permute_to(f.begin(), g, working_set);
new_hash_eq[working_set] += character[i] * c0_ord;
}
}
if (new_hash_eq == old_hash_eq) continue; // guard against the most trivial repetition
old_hash_eq = new_hash_eq;
if (calculate_support) {
for (const auto& m: old_hash_eq)
if (!is_zero(m.second))
support += m.first;
} else {
if (filename.size())
wrap(os) << new_hash_eq << endl;
else
spanning_hash_vectors.push_back(new_hash_eq);
}
}
}
if (calculate_support && filename.size())
wrap(os) << support << endl;
return std::make_pair(Array<SparseSimplexVector<SparseSet>>(spanning_hash_vectors.size(), entire(spanning_hash_vectors)), support);
}
template<typename SparseSet>
void
augment_index_of(hash_map<SparseSet, Int>& index_of,
const SparseIsotypicBasis<SparseSet>& subspace_generators)
{
Int index = index_of.size();
for (const auto& sgen: subspace_generators)
for (const auto& m: sgen)
if (!index_of.exists(m.first))
index_of[m.first] = index++;
}
template<typename SparseSet>
ListMatrix<SparseVector<Rational>>
list_matrix_representation(const hash_map<SparseSet, Int>& index_of,
const SparseIsotypicBasis<SparseSet>& subspace_generators)
{
ListMatrix<SparseVector<Rational>> sgen_matrix(0, index_of.size());
for (const auto& sgen: subspace_generators) {
SparseVector<Rational> new_sgen(index_of.size());
for (const auto& m: sgen)
new_sgen[index_of.at(m.first)] = m.second;
sgen_matrix /= new_sgen;
}
return sgen_matrix;
}
template<typename SparseSet>
bool
spans_invariant_subspace_impl(const Array<Array<Int>>& group_generators,
const SparseIsotypicBasis<SparseSet>& subspace_generators,
bool verbose)
{
hash_map<SparseSet, Int> index_of;
augment_index_of(index_of, subspace_generators);
const SparseMatrix<Rational> ker = null_space(list_matrix_representation(index_of, subspace_generators));
for (const auto& sgen: subspace_generators) {
for (const auto& o_sgen: unordered_orbit<on_container>(group_generators, sgen)) {
SparseVector<Rational> new_sgen(index_of.size());
for (const auto& m: o_sgen) {
try {
new_sgen[index_of.at(m.first)] = m.second;
} catch (const no_match&) {
if (verbose) cerr << "The given vectors do not span an invariant subspace, because "
<< m << " is in the support of the orbit of " << sgen
<< ", but not in the orbit of the support of the given vectors" << endl;
return false;
}
}
if (!is_zero(ker * new_sgen)) {
if (verbose) cerr << "The given vectors do not span an invariant subspace, because "
<< new_sgen << ", corresponding to "
<< o_sgen << " is not in the spanned subspace L. Here, ker L =\n"
<< ker << endl;
return false;
}
}
}
return true;
}
} }
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|