1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
object PermutationAction {
# Strong generating set with respect to [[BASE]].
property STRONG_GENERATORS : Array<Array<Int>>;
# The number of [[STRONG_GENERATORS]].
property N_STRONG_GENERATORS : Int;
# A base for [[STRONG_GENERATORS]].
property BASE : Array<Int>;
# Transversals along the stabilizer chain.
property TRANSVERSALS : Array<Array<Int>>;
# The number of group elements per transversal.
property TRANSVERSAL_SIZES : Array<Int>;
rule initial : {
my $g=$this->GENERATORS;
my $length=$g->size && $g->[0]->size;
foreach (@$g) {
if ($_->size != $length) {
croak( "all generators must have the same length" );
}
my %vals;
foreach my $entry (@$_) {
if ($entry<0 || $entry>=$length) {
croak( "each generator must be a permutation of (0,...,DEGREE-1)" );
}
$vals{$entry}++;
}
if (keys %vals != $length) {
croak( "each generator must be a permutation of (0,...,DEGREE-1)" );
}
}
}
precondition : exists(GENERATORS);
rule DEGREE : GENERATORS {
$this->DEGREE=$this->GENERATORS->[0]->size;
}
#counts the number of elements in each transversal that are not null
rule TRANSVERSAL_SIZES : TRANSVERSALS {
my $trans_sizes=new Array<Int>($this->TRANSVERSALS->size);
for(my $i=0;$i<$this->TRANSVERSALS->size;$i++){
my $trans_size=1;
my $single_trans=$this->TRANSVERSALS->[$i];
for(my $j=0;$j<$single_trans->size;$j++){
if($single_trans->[$j]>=0){
$trans_size++;
}
}
$trans_sizes->[$i]=$trans_size;
}
$this->TRANSVERSAL_SIZES=$trans_sizes;
}
rule CHARACTER : CONJUGACY_CLASS_REPRESENTATIVES {
$this->CHARACTER = new Array<QuadraticExtension>(map { n_fixed_points($_) } @{$this->CONJUGACY_CLASS_REPRESENTATIVES});
}
precondition : !exists(EXPLICIT_ORBIT_REPRESENTATIVES);
rule CHARACTER : GENERATORS, CONJUGACY_CLASS_REPRESENTATIVES, EXPLICIT_ORBIT_REPRESENTATIVES {
$this->CHARACTER = implicit_character($this);
}
rule CONJUGACY_CLASSES : GENERATORS, CONJUGACY_CLASS_REPRESENTATIVES {
$this->CONJUGACY_CLASSES(temporary) = conjugacy_classes($this->GENERATORS, $this->CONJUGACY_CLASS_REPRESENTATIVES);
}
rule CONJUGACY_CLASSES, CONJUGACY_CLASS_REPRESENTATIVES : GENERATORS {
my $pair = conjugacy_classes_and_reps($this->GENERATORS);
$this->CONJUGACY_CLASSES = $pair->first;
$this->CONJUGACY_CLASS_REPRESENTATIVES = $pair->second;
}
rule ORBITS : GENERATORS {
$this->ORBITS = orbits_of_action($this);
}
rule N_ORBITS : ORBITS {
$this->N_ORBITS = $this->ORBITS->size();
}
rule N_INPUT_RAYS_GENERATORS : INPUT_RAYS_GENERATORS {
$this->N_INPUT_RAYS_GENERATORS = $this->INPUT_RAYS_GENERATORS->rows;
}
rule N_RAYS_GENERATORS : RAYS_GENERATORS {
$this->N_RAYS_GENERATORS = $this->RAYS_GENERATORS->rows;
}
rule N_INEQUALITIES_GENERATORS : INEQUALITIES_GENERATORS {
$this->N_INEQUALITIES_GENERATORS = $this->INEQUALITIES_GENERATORS->rows;
}
rule N_EQUATIONS_GENERATORS : EQUATIONS_GENERATORS {
$this->N_EQUATIONS_GENERATORS = $this->EQUATIONS_GENERATORS->rows;
}
rule ORBIT_REPRESENTATIVES : GENERATORS {
$this->ORBIT_REPRESENTATIVES = orbit_representatives($this->GENERATORS);
}
rule PERMUTATION_TO_ORBIT_ORDER : GENERATORS, ORBIT_REPRESENTATIVES {
$this->PERMUTATION_TO_ORBIT_ORDER = to_orbit_order($this->GENERATORS, $this->ORBIT_REPRESENTATIVES);
}
}
object MatrixActionOnVectors {
# @category Symmetry
# orbits of vectors under a matrix group
property VECTORS_ORBITS : Array<Set<Int>>;
rule CONJUGACY_CLASSES : GENERATORS, CONJUGACY_CLASS_REPRESENTATIVES {
$this->CONJUGACY_CLASSES = conjugacy_classes($this->GENERATORS, $this->CONJUGACY_CLASS_REPRESENTATIVES);
}
rule CONJUGACY_CLASSES, CONJUGACY_CLASS_REPRESENTATIVES : GENERATORS {
my $pair = conjugacy_classes_and_reps($this->GENERATORS);
$this->CONJUGACY_CLASSES = $pair->first;
$this->CONJUGACY_CLASS_REPRESENTATIVES = $pair->second;
}
rule CHARACTER : CONJUGACY_CLASS_REPRESENTATIVES {
$this->CHARACTER = new Array<QuadraticExtension>(map { trace($_) } @{$this->CONJUGACY_CLASS_REPRESENTATIVES});
}
precondition : !exists(EXPLICIT_ORBIT_REPRESENTATIVES);
}
object Group {
rule REGULAR_REPRESENTATION : PERMUTATION_ACTION.GENERATORS {
$this->REGULAR_REPRESENTATION = regular_representation($this->PERMUTATION_ACTION);
}
}
# @category Symmetry
# Given a permutation action //a// on some indices and an ordered list //domain// of sets containing these indices,
# we ask for the permutation action induced by //a// on this list of sets.
# @param PermutationAction a a permutation action that acts on some indices
# @param Array<Set<Int>> domain a list of sets of indices that //a// should act on
# @return PermutationActionOnSets
# @example Consider the symmetry group of the 3-cube acting on vertices, and induce from it the action on the facets:
# > $a = cube_group(3)->PERMUTATION_ACTION;
# > $f = new Array<Set>([[0,2,4,6],[1,3,5,7],[0,1,4,5],[2,3,6,7],[0,1,2,3],[4,5,6,7]]);
# > print $a->GENERATORS;
# | 1 0 3 2 5 4 7 6
# | 0 2 1 3 4 6 5 7
# | 0 1 4 5 2 3 6 7
# > print induced_action($a,$f)->GENERATORS;
# | 1 0 2 3 4 5
# | 2 3 0 1 4 5
# | 0 1 4 5 2 3
# @example To see what the permutation [0,2,1] induces on the array [{0,1},{0,2}], do the following:
# > $a = new Array<Set<Int>>(2);
# > $a->[0] = new Set<Int>(0,1);
# > $a->[1] = new Set<Int>(0,2);
# > $p = new PermutationAction(GENERATORS=>[[0,2,1]]);
# > print induced_action($p,$a)->properties;
# | type: PermutationActionOnSets
# |
# | GENERATORS
# | 1 0
user_function induced_action(PermutationAction, Array<Set<Int>>) {
my ($action, $domain) = @_;
my $iod = index_of($domain);
my $ia = new PermutationActionOnSets;
map {
if (defined($action->lookup($_))) {
$ia->$_ = induced_permutations($action->$_, $domain, $iod);
}
} ('GENERATORS', 'CONJUGACY_CLASS_REPRESENTATIVES');
return $ia;
}
function nonhomog_container_orbit($$) {
my ($gens, $elem) = @_;
return orbit<on_nonhomog_container>($gens, $elem);
}
function homog_container_orbit($$) {
my ($gens, $elem) = @_;
return orbit<on_container>($gens, $elem);
}
# @category Symmetry
# Given a matrix action //a// of a group //G// on some //n//-dimensional vector space and a total degree //d//,
# calculate the //G//-invariant polynomials of total degree 0 < //deg// ≤ //d// in //n// variables.
# This is done by calculating the //a//-orbit of all monomials of total degree at most //d//.
# By a theorem of Noether, for //d// = the order of //G// the output is guaranteed to generate the entire ring of //G//-invariant polynomials.
# No effort is made to calculate a basis of the ideal generated by these invariants.
# @param MatrixActionOnVectors a the matrix action
# @param Int d the maximal degree of the sought invariants
# @option Bool action_is_affine is the action //a// affine, ie., ignore the first row and column of the generating matrices? Default yes
# @example [application polytope] To calculate the invariants of degree at most six of the matrix action of the symmetry group of the 3-cube, type
# > $c = cube(3, group=>1);
# > print join "\n", @{group::invariant_polynomials($c->GROUP->MATRIX_ACTION, 6)};
# | x_0^2 + x_1^2 + x_2^2
# | x_0^2*x_1^2 + x_0^2*x_2^2 + x_1^2*x_2^2
# | x_0^2*x_1^2*x_2^2
# | x_0^4 + x_1^4 + x_2^4
# | x_0^4*x_1^2 + x_0^4*x_2^2 + x_0^2*x_1^4 + x_0^2*x_2^4 + x_1^4*x_2^2 + x_1^2*x_2^4
# | x_0^6 + x_1^6 + x_2^6
user_function invariant_polynomials<Scalar>(MatrixActionOnVectors<Scalar>, $, { action_is_affine => 1 }) {
my ($a, $d, $options) = @_;
my $n = $a->GENERATORS->[0]->rows();
my $is_affine = $options->{action_is_affine};
if ($is_affine) {
$n--;
}
my $zero = new Scalar(0);
my $one = new Scalar(1);
my $zero_poly = new Polynomial<Scalar>($zero, zero_vector<Int>($n));
my $one_poly = new Polynomial<Scalar>($one, zero_vector<Int>($n));
# turn the matrices in G into matrices of constant polynomials; take is_affine into account
my @G_as_poly;
foreach my $g(@{$a->ALL_GROUP_ELEMENTS}) {
my $m = new Matrix<Polynomial<Scalar>>($n, $n);
foreach my $i(0..$n-1) {
foreach my $j(0..$n-1) {
$m->elem($i,$j) = $is_affine
? $g->elem($i+1,$j+1) * $one_poly
: $g->elem($i, $j) * $one_poly;
}
}
push @G_as_poly, $m;
}
# make a vector of monomials (x_0, x_1, ..., x_{n-1})
my @a_monoms;
foreach(0..$n-1) {
push @a_monoms, new Polynomial<Scalar>($one, unit_vector<Int>($n, $_));
}
my $v_monoms = new Vector<Polynomial<Scalar>>(\@a_monoms);
# generate the exponent vectors of monomials of degree at most $d
my $deg_ineq = new Vector(-ones_vector($n+1));
$deg_ineq->[0] = $d;
my $exponents = new Matrix<Int>(new polytope::Polytope(INEQUALITIES=>(unit_matrix($n+1)/$deg_ineq))->LATTICE_POINTS->minor(All, ~[0]));
# now generate the invariants
my $invariants = new Set<Polynomial<Scalar>>;
foreach my $alpha(@{$exponents}) {
# for each monomial x^alpha we implement inv_alpha = sum_{g in G} (g.x0)^alpha_0 ... (g.x_{n-1})^alpha_{n-1}
my $inv_alpha = $zero_poly;
foreach my $g(@G_as_poly) {
my $img_of_monoms = $g * $v_monoms;
my $new_monom = $one_poly;
foreach my $i (0..$n-1) {
if ($alpha->[$i] > 0) {
$new_monom *= ($img_of_monoms->[$i])^(int($alpha->[$i])); # omitting the int() miscompiles on gcc 5.3.0
}
}
$inv_alpha += $new_monom;
}
if ($inv_alpha != $zero_poly && $inv_alpha->deg() > 0) { # don't remember constants or constant coefficients
$inv_alpha -= $inv_alpha->constant_coefficient();
$invariants += $inv_alpha / $inv_alpha->lc();
}
}
return $invariants;
}
# Local Variables:
# mode: perl
# cperl-indent-level: 3
# indent-tabs-mode:nil
# End:
|