File: action.rules

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (298 lines) | stat: -rw-r--r-- 11,181 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#  Copyright (c) 1997-2024
#  Ewgenij Gawrilow, Michael Joswig, and the polymake team
#  Technische Universität Berlin, Germany
#  https://polymake.org
#
#  This program is free software; you can redistribute it and/or modify it
#  under the terms of the GNU General Public License as published by the
#  Free Software Foundation; either version 2, or (at your option) any
#  later version: http://www.gnu.org/licenses/gpl.txt.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#-------------------------------------------------------------------------------

object PermutationAction {

   # Strong generating set with respect to [[BASE]].
   property STRONG_GENERATORS : Array<Array<Int>>;

   # The number of [[STRONG_GENERATORS]].
   property N_STRONG_GENERATORS : Int;

   # A base for [[STRONG_GENERATORS]].
   property BASE : Array<Int>;



# Transversals along the stabilizer chain. 
   property TRANSVERSALS : Array<Array<Int>>;

# The number of group elements per transversal.
   property TRANSVERSAL_SIZES : Array<Int>;


   rule initial : {
      my $g=$this->GENERATORS;
      my $length=$g->size && $g->[0]->size;
      foreach (@$g) {
         if ($_->size != $length) {
            croak( "all generators must have the same length" );
         }
         my %vals;
         foreach my $entry (@$_) {
            if ($entry<0 || $entry>=$length) {
               croak( "each generator must be a permutation of (0,...,DEGREE-1)" );
            }
            $vals{$entry}++;
         }
         if (keys %vals != $length) {
            croak( "each generator must be a permutation of (0,...,DEGREE-1)" );
         }
      }
   }
   precondition : exists(GENERATORS);

   rule DEGREE : GENERATORS {
      $this->DEGREE=$this->GENERATORS->[0]->size;
   }

#counts the number of elements in each transversal that are not null
   rule TRANSVERSAL_SIZES : TRANSVERSALS {
      my $trans_sizes=new Array<Int>($this->TRANSVERSALS->size);
      for(my $i=0;$i<$this->TRANSVERSALS->size;$i++){
         my $trans_size=1;
         my $single_trans=$this->TRANSVERSALS->[$i];
         for(my $j=0;$j<$single_trans->size;$j++){
            if($single_trans->[$j]>=0){
               $trans_size++;
            }
         }
         $trans_sizes->[$i]=$trans_size;
      }
      $this->TRANSVERSAL_SIZES=$trans_sizes;
   }

   rule CHARACTER : CONJUGACY_CLASS_REPRESENTATIVES {
       $this->CHARACTER = new Array<QuadraticExtension>(map { n_fixed_points($_) } @{$this->CONJUGACY_CLASS_REPRESENTATIVES});
   }
   precondition : !exists(EXPLICIT_ORBIT_REPRESENTATIVES);

   rule CHARACTER : GENERATORS, CONJUGACY_CLASS_REPRESENTATIVES, EXPLICIT_ORBIT_REPRESENTATIVES {
       $this->CHARACTER = implicit_character($this);
   }

   rule CONJUGACY_CLASSES : GENERATORS, CONJUGACY_CLASS_REPRESENTATIVES {
      $this->CONJUGACY_CLASSES(temporary) = conjugacy_classes($this->GENERATORS, $this->CONJUGACY_CLASS_REPRESENTATIVES);
   }

   rule CONJUGACY_CLASSES, CONJUGACY_CLASS_REPRESENTATIVES : GENERATORS {
       my $pair = conjugacy_classes_and_reps($this->GENERATORS);
       $this->CONJUGACY_CLASSES = $pair->first;
       $this->CONJUGACY_CLASS_REPRESENTATIVES = $pair->second;
   }

   rule ORBITS : GENERATORS {
       $this->ORBITS = orbits_of_action($this);
   }

   rule N_ORBITS : ORBITS {
       $this->N_ORBITS = $this->ORBITS->size();
   }

   rule N_INPUT_RAYS_GENERATORS : INPUT_RAYS_GENERATORS {
       $this->N_INPUT_RAYS_GENERATORS = $this->INPUT_RAYS_GENERATORS->rows;
   }

   rule N_RAYS_GENERATORS : RAYS_GENERATORS {
       $this->N_RAYS_GENERATORS = $this->RAYS_GENERATORS->rows;
   }

   rule N_INEQUALITIES_GENERATORS : INEQUALITIES_GENERATORS {
       $this->N_INEQUALITIES_GENERATORS = $this->INEQUALITIES_GENERATORS->rows;
   }

   rule N_EQUATIONS_GENERATORS : EQUATIONS_GENERATORS {
       $this->N_EQUATIONS_GENERATORS = $this->EQUATIONS_GENERATORS->rows;
   }

   rule ORBIT_REPRESENTATIVES : GENERATORS {
       $this->ORBIT_REPRESENTATIVES = orbit_representatives($this->GENERATORS);
   }

   rule PERMUTATION_TO_ORBIT_ORDER : GENERATORS, ORBIT_REPRESENTATIVES {
       $this->PERMUTATION_TO_ORBIT_ORDER = to_orbit_order($this->GENERATORS, $this->ORBIT_REPRESENTATIVES);
   }

}

object MatrixActionOnVectors {

    # @category Symmetry
    # orbits of vectors under a matrix group
    property VECTORS_ORBITS : Array<Set<Int>>;

    rule CONJUGACY_CLASSES : GENERATORS, CONJUGACY_CLASS_REPRESENTATIVES {
        $this->CONJUGACY_CLASSES = conjugacy_classes($this->GENERATORS, $this->CONJUGACY_CLASS_REPRESENTATIVES);
    }

    rule CONJUGACY_CLASSES, CONJUGACY_CLASS_REPRESENTATIVES : GENERATORS {
        my $pair = conjugacy_classes_and_reps($this->GENERATORS);
        $this->CONJUGACY_CLASSES = $pair->first;
        $this->CONJUGACY_CLASS_REPRESENTATIVES = $pair->second;
    }

   rule CHARACTER : CONJUGACY_CLASS_REPRESENTATIVES {
       $this->CHARACTER = new Array<QuadraticExtension>(map { trace($_) } @{$this->CONJUGACY_CLASS_REPRESENTATIVES});
   }
   precondition : !exists(EXPLICIT_ORBIT_REPRESENTATIVES);
}

object Group {
    
    rule REGULAR_REPRESENTATION : PERMUTATION_ACTION.GENERATORS {
        $this->REGULAR_REPRESENTATION = regular_representation($this->PERMUTATION_ACTION);
    }
    
}

# @category Symmetry
# Given a permutation action //a// on some indices and an ordered list //domain// of sets containing these indices,
# we ask for the permutation action induced by //a// on this list of sets.
# @param PermutationAction a a permutation action that acts on some indices
# @param Array<Set<Int>> domain a list of sets of indices that //a// should act on
# @return PermutationActionOnSets
# @example Consider the symmetry group of the 3-cube acting on vertices, and induce from it the action on the facets:
# > $a = cube_group(3)->PERMUTATION_ACTION;
# > $f = new Array<Set>([[0,2,4,6],[1,3,5,7],[0,1,4,5],[2,3,6,7],[0,1,2,3],[4,5,6,7]]);
# > print $a->GENERATORS;
# | 1 0 3 2 5 4 7 6
# | 0 2 1 3 4 6 5 7
# | 0 1 4 5 2 3 6 7
# > print induced_action($a,$f)->GENERATORS;
# | 1 0 2 3 4 5
# | 2 3 0 1 4 5
# | 0 1 4 5 2 3
# @example To see what the permutation [0,2,1] induces on the array [{0,1},{0,2}], do the following:
# > $a = new Array<Set<Int>>(2);
# > $a->[0] = new Set<Int>(0,1);
# > $a->[1] = new Set<Int>(0,2);
# > $p = new PermutationAction(GENERATORS=>[[0,2,1]]);
# > print induced_action($p,$a)->properties;
# | type: PermutationActionOnSets
# |
# | GENERATORS
# | 1 0
user_function induced_action(PermutationAction, Array<Set<Int>>) {
    my ($action, $domain) = @_;
    my $iod = index_of($domain);
    my $ia = new PermutationActionOnSets;
    map {
        if (defined($action->lookup($_))) {
            $ia->$_ = induced_permutations($action->$_, $domain, $iod);
        }
    } ('GENERATORS', 'CONJUGACY_CLASS_REPRESENTATIVES');
    return $ia;
}

function nonhomog_container_orbit($$) {
    my ($gens, $elem) = @_;
    return orbit<on_nonhomog_container>($gens, $elem);
}

function homog_container_orbit($$) {
    my ($gens, $elem) = @_;
    return orbit<on_container>($gens, $elem);
}

                                             
# @category Symmetry
# Given a matrix action //a// of a group //G// on some //n//-dimensional vector space and a total degree //d//,
# calculate the //G//-invariant polynomials of total degree 0 < //deg// ≤ //d// in //n// variables.
# This is done by calculating the //a//-orbit of all monomials of total degree at most //d//.
# By a theorem of Noether, for //d// = the order of //G// the output is guaranteed to generate the entire ring of //G//-invariant polynomials.
# No effort is made to calculate a basis of the ideal generated by these invariants. 
# @param MatrixActionOnVectors a the matrix action
# @param Int d the maximal degree of the sought invariants
# @option Bool action_is_affine is the action //a// affine, ie., ignore the first row and column of the generating matrices? Default yes
# @example [application polytope] To calculate the invariants of degree at most six of the matrix action of the symmetry group of the 3-cube, type
# > $c = cube(3, group=>1);
# > print join "\n", @{group::invariant_polynomials($c->GROUP->MATRIX_ACTION, 6)};
# | x_0^2 + x_1^2 + x_2^2
# | x_0^2*x_1^2 + x_0^2*x_2^2 + x_1^2*x_2^2
# | x_0^2*x_1^2*x_2^2
# | x_0^4 + x_1^4 + x_2^4
# | x_0^4*x_1^2 + x_0^4*x_2^2 + x_0^2*x_1^4 + x_0^2*x_2^4 + x_1^4*x_2^2 + x_1^2*x_2^4
# | x_0^6 + x_1^6 + x_2^6

user_function invariant_polynomials<Scalar>(MatrixActionOnVectors<Scalar>, $, { action_is_affine => 1 }) {
    my ($a, $d, $options) = @_;
    my $n = $a->GENERATORS->[0]->rows();

    my $is_affine = $options->{action_is_affine};
    if ($is_affine) {
        $n--;
    }
    
    my $zero = new Scalar(0);
    my $one  = new Scalar(1);
    my $zero_poly = new Polynomial<Scalar>($zero, zero_vector<Int>($n));
    my $one_poly  = new Polynomial<Scalar>($one,  zero_vector<Int>($n));

    # turn the matrices in G into matrices of constant polynomials; take is_affine into account
    my @G_as_poly;
    foreach my $g(@{$a->ALL_GROUP_ELEMENTS}) {
        my $m = new Matrix<Polynomial<Scalar>>($n, $n);
        foreach my $i(0..$n-1) {
            foreach my $j(0..$n-1) {
                $m->elem($i,$j) = $is_affine
                    ? $g->elem($i+1,$j+1) * $one_poly
                    : $g->elem($i,  $j)   * $one_poly;
            }
        }
        push @G_as_poly, $m;
    }

    # make a vector of monomials (x_0, x_1, ..., x_{n-1})
    my @a_monoms;
    foreach(0..$n-1) {
        push @a_monoms, new Polynomial<Scalar>($one, unit_vector<Int>($n, $_));
    }
    my $v_monoms = new Vector<Polynomial<Scalar>>(\@a_monoms);

    # generate the exponent vectors of monomials of degree at most $d
    my $deg_ineq = new Vector(-ones_vector($n+1));
    $deg_ineq->[0] = $d;
    my $exponents = new Matrix<Int>(new polytope::Polytope(INEQUALITIES=>(unit_matrix($n+1)/$deg_ineq))->LATTICE_POINTS->minor(All, ~[0]));

    # now generate the invariants
    my $invariants = new Set<Polynomial<Scalar>>;
    foreach my $alpha(@{$exponents}) {
        # for each monomial x^alpha we implement inv_alpha = sum_{g in G} (g.x0)^alpha_0 ... (g.x_{n-1})^alpha_{n-1}
        my $inv_alpha = $zero_poly;
        foreach my $g(@G_as_poly) {
            my $img_of_monoms = $g * $v_monoms;
            my $new_monom = $one_poly;
            foreach my $i (0..$n-1) {
                if ($alpha->[$i] > 0) {
                    $new_monom *= ($img_of_monoms->[$i])^(int($alpha->[$i])); # omitting the int() miscompiles on gcc 5.3.0
                }
            }
            $inv_alpha += $new_monom;
        }
        if ($inv_alpha != $zero_poly && $inv_alpha->deg() > 0) { # don't remember constants or constant coefficients
            $inv_alpha -= $inv_alpha->constant_coefficient();
            $invariants += $inv_alpha / $inv_alpha->lc();
        }
    }
    return $invariants;
}


# Local Variables:
# mode: perl
# cperl-indent-level: 3
# indent-tabs-mode:nil
# End: