1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
# This contains rules for computing/converting properties between a matroid and its dual.
object Matroid {
# @category Duality
# The dual matroid.
property DUAL : self : twin;
rule DUAL.N_ELEMENTS = N_ELEMENTS;
rule DUAL.LABELS = LABELS;
rule DUAL.RANK : N_ELEMENTS, RANK {
$this->DUAL->RANK = $this->N_ELEMENTS - $this->RANK;
}
weight 0.1;
rule DUAL.BASES : BASES, N_ELEMENTS {
$this->DUAL->BASES = dual_bases_from_bases($this->N_ELEMENTS, $this->BASES);
}
weight 1.10;
rule DUAL.NON_BASES : NON_BASES, N_ELEMENTS {
$this->DUAL->NON_BASES = dual_bases_from_bases($this->N_ELEMENTS, $this->NON_BASES);
}
weight 1.10;
rule DUAL.CIRCUITS : BASES, N_ELEMENTS {
$this->DUAL->CIRCUITS = dual_circuits_from_bases($this->N_ELEMENTS, $this->BASES);
}
weight 4.10;
rule BASES : DUAL.CIRCUITS, N_ELEMENTS {
$this->BASES = bases_from_dual_circuits($this->N_ELEMENTS, $this->DUAL->CIRCUITS);
}
weight 4.10;
rule BASES : DUAL.CIRCUITS, RANK, N_ELEMENTS {
$this->BASES = bases_from_dual_circuits_and_rank($this->N_ELEMENTS, $this->RANK, $this->DUAL->CIRCUITS);
}
weight 3.10;
rule DUAL.VECTORS : VECTORS {
$this->DUAL->VECTORS = transpose(null_space(transpose($this->VECTORS)));
}
weight 3.10;
precondition : RANK, N_ELEMENTS {
$this->RANK < $this->N_ELEMENTS;
}
rule DUAL.VECTORS : VECTORS, N_ELEMENTS {
$this->DUAL->VECTORS = new Matrix<Rational>($this->N_ELEMENTS, $this->VECTORS->cols != 0);
}
weight 0.10;
precondition : RANK, N_ELEMENTS {
$this->RANK == $this->N_ELEMENTS;
}
rule MATROID_HYPERPLANES : DUAL.CIRCUITS, N_ELEMENTS {
my $total = sequence(0,$this->N_ELEMENTS);
$this->MATROID_HYPERPLANES = [ map { $total - $_} @{$this->DUAL->CIRCUITS}];
}
weight 1.10;
rule DUAL.CIRCUITS : MATROID_HYPERPLANES, N_ELEMENTS {
my $total = sequence(0,$this->N_ELEMENTS);
$this->DUAL->CIRCUITS = [ map { $total - $_} @{$this->MATROID_HYPERPLANES}];
}
weight 1.10;
rule SPARSE_PAVING : PAVING, DUAL.PAVING {
$this->SPARSE_PAVING = $this->PAVING && $this->DUAL->PAVING;
}
weight 0.1;
rule IDENTICALLY_SELF_DUAL : CIRCUITS, DUAL.CIRCUITS {
$this->IDENTICALLY_SELF_DUAL = defined(find_permutation($this->CIRCUITS, $this->DUAL->CIRCUITS));
}
weight 2.10;
precondition : N_ELEMENTS, RANK {
2*$this->RANK == $this->N_ELEMENTS;
}
rule SELF_DUAL : CIRCUITS, DUAL.CIRCUITS {
$this->SELF_DUAL = defined(find_row_col_permutation(new IncidenceMatrix($this->CIRCUITS), new IncidenceMatrix($this->DUAL->CIRCUITS)));
}
weight 5.10;
precondition : N_ELEMENTS, RANK {
2*$this->RANK == $this->N_ELEMENTS;
}
rule CONNECTED_COMPONENTS : DUAL.CIRCUITS, N_ELEMENTS{
$this->CONNECTED_COMPONENTS = connected_components_from_circuits($this->DUAL->CIRCUITS, $this->N_ELEMENTS);
}
weight 1.10;
rule SELF_DUAL, IDENTICALLY_SELF_DUAL : {
$this->SELF_DUAL = 0;
$this->IDENTICALLY_SELF_DUAL = 0;
}
weight 0.1;
precondition : N_ELEMENTS, RANK {
2*$this->RANK != $this->N_ELEMENTS;
}
rule SELF_DUAL : IDENTICALLY_SELF_DUAL {
$this->SELF_DUAL = 1;
}
weight 0.1;
precondition : IDENTICALLY_SELF_DUAL;
rule IDENTICALLY_SELF_DUAL : BASES, DUAL.BASES {
$this->IDENTICALLY_SELF_DUAL = defined(find_permutation($this->BASES, $this->DUAL->BASES));
}
weight 2.10;
precondition : N_ELEMENTS, RANK {
2 * $this->RANK == $this->N_ELEMENTS;
}
rule SELF_DUAL : BASES, DUAL.BASES {
$this->SELF_DUAL = defined(find_row_col_permutation(new IncidenceMatrix($this->BASES), new IncidenceMatrix($this->DUAL->BASES)));
}
weight 5.10;
precondition : N_ELEMENTS, RANK {
2*$this->RANK == $this->N_ELEMENTS;
}
rule SPLIT : {
$this->SPLIT=1;
}
precondition : PAVING || DUAL.PAVING;
weight 0.10;
# @category Advanced properties
# Whether the dual of the matroid is transversal,
# i.e. same as [[DUAL.TRANSVERSAL]]
user_method COTRANSVERSAL {
return $_[0]->DUAL->TRANSVERSAL;
}
# @category Advanced properties
# Alias for [[COTRANSVERSAL]]
user_method STRICT_GAMMOID {
return $_[0]->COTRANSVERSAL();
}
}
# Local Variables:
# mode: perl
# cperl-indent-level: 3
# indent-tabs-mode:nil
# End:
|