File: matroid.rules

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (593 lines) | stat: -rw-r--r-- 18,205 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
#  Copyright (c) 1997-2024
#  Ewgenij Gawrilow, Michael Joswig, and the polymake team
#  Technische Universität Berlin, Germany
#  https://polymake.org
#
#  This program is free software; you can redistribute it and/or modify it
#  under the terms of the GNU General Public License as published by the
#  Free Software Foundation; either version 2, or (at your option) any
#  later version: http://www.gnu.org/licenses/gpl.txt.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPSE.  See the
#  GNU General Public License for more details.
#-------------------------------------------------------------------------------

object Matroid {

rule RANK : BASES {
  $this->RANK = $this->BASES->[0]->size();
}
weight 0.1;

rule BASES, N_BASES, RANK, N_ELEMENTS : VECTORS {
  bases_from_points($this)
}
weight 4.50;

rule BASES, N_BASES, RANK : LATTICE_OF_FLATS, N_ELEMENTS {
  bases_from_lof($this)
}
weight 4.50;

rule POLYTOPE.CONE_AMBIENT_DIM : N_ELEMENTS {
   $this->POLYTOPE->CONE_AMBIENT_DIM = $this->N_ELEMENTS+1;
}
weight 0.10;

rule POLYTOPE.FEASIBLE : N_BASES {
   $this->POLYTOPE->FEASIBLE = $this->N_BASES > 0;
}
weight 0.10;

rule POLYTOPE.BOUNDED : {
   $this->POLYTOPE->BOUNDED = true;
}
weight 0.10;

rule POLYTOPE.VERTICES, POLYTOPE.CONE_AMBIENT_DIM, POLYTOPE.FEASIBLE, POLYTOPE.BOUNDED : BASES, N_ELEMENTS {
   polytope::matroid_polytope($this)
}
weight 1.12;

rule POLYTOPE.VertexPerm.PERMUTATION = BasesPerm.PERMUTATION;

rule POLYTOPE.VERTICES, POLYTOPE.CONE_AMBIENT_DIM, POLYTOPE.INEQUALITIES, POLYTOPE.EQUATIONS, POLYTOPE.FEASIBLE, POLYTOPE.BOUNDED: BASES, N_ELEMENTS, RANK, CONNECTED, LATTICE_OF_FLATS {
   polytope::matroid_polytope($this, inequalities=>true)
}
precondition : CONNECTED;
weight 1.10;

rule POLYTOPE.EHRHART_POLYNOMIAL : SPARSE_PAVING, N_ELEMENTS, RANK, N_BASES {
	my $n = $this->N_ELEMENTS;
	my $r = $this->RANK;
	my $lambda = binomial($n,$r)-$this->N_BASES;
	if($lambda == 0){
		$this->POLYTOPE->EHRHART_POLYNOMIAL = polytope::ehrhart_polynomial_hypersimplex($r,$n);
	}else{
		$this->POLYTOPE->EHRHART_POLYNOMIAL = polytope::ehrhart_polynomial_hypersimplex($r,$n) + $lambda*(polytope::ehrhart_polynomial_product_simplicies($r,$n-$r) - polytope::ehrhart_polynomial_minimal_matroid($r,$n));
	}
}
precondition : CONNECTED && SPARSE_PAVING;
weight 1.20;

rule POLYTOPE.EHRHART_POLYNOMIAL : SPLIT_FLACETS, N_ELEMENTS, RANK {
	my $n = $this->N_ELEMENTS;
	my $r = $this->RANK;
	my $f = polytope::ehrhart_polynomial_hypersimplex($r,$n);
	for my $i (1..$this->SPLIT_FLACETS->size-1){
		for my $flat (@{$this->SPLIT_FLACETS->[$i]}){
			$f-= polytope::ehrhart_polynomial_cuspidal_matroid($r,$n,$flat->size,$r-$i)-polytope::ehrhart_polynomial_hypersimplex($i,$flat->size)*polytope::ehrhart_polynomial_hypersimplex($r-$i,$n-$flat->size);
		}
	}
	$this->POLYTOPE->EHRHART_POLYNOMIAL = $f;
}
precondition : CONNECTED && SPLIT;
weight 1.50;


rule RANK : NON_BASES { # should be more expensive than the computation from BASES
   $this->RANK=$this->NON_BASES->[0]->size();
}
precondition : NON_BASES {
   $this->NON_BASES->size() > 0;
}
weight 0.1;

rule BASES : RANK, N_ELEMENTS {
   $this->BASES = all_subsets_of_k(sequence(0, $this->N_ELEMENTS), $this->RANK);
}
precondition : NON_BASES {
   $this->NON_BASES->size() == 0;
}
weight 0.10;

rule BASES : NON_BASES, N_ELEMENTS {
   $this->BASES = invert_bases($this->NON_BASES, $this->N_ELEMENTS);
}
precondition : NON_BASES {
   $this->NON_BASES->size() > 0;
}
weight 3.10;

rule NON_BASES : BASES, N_ELEMENTS {
  $this->NON_BASES = invert_bases($this->BASES, $this->N_ELEMENTS)
}
weight 3.10;

rule CIRCUITS : BASES, N_ELEMENTS {
   $this->CIRCUITS = bases_to_circuits($this->BASES, $this->N_ELEMENTS);
}
weight 4.10;

rule BASES : CIRCUITS, N_ELEMENTS {
   $this->BASES = circuits_to_bases($this->CIRCUITS, $this->N_ELEMENTS);
}
weight 4.10;

rule BASES : CIRCUITS, N_ELEMENTS, RANK {
   $this->BASES = circuits_to_bases_rank($this->CIRCUITS, $this->N_ELEMENTS, $this->RANK);
}
weight 3.10;

rule MATROID_HYPERPLANES : CIRCUITS, N_ELEMENTS, RANK {
   $this->MATROID_HYPERPLANES = circuits_to_hyperplanes($this->CIRCUITS, $this->N_ELEMENTS, $this->RANK);
}
weight 3.10;

rule N_MATROID_HYPERPLANES : MATROID_HYPERPLANES {
    $this->N_MATROID_HYPERPLANES = $this->MATROID_HYPERPLANES->size();
}
weight 0.10;

rule LOOPS : BASES, N_ELEMENTS {
    loops($this);
}
weight 1.10;

rule N_BASES : BASES {
   $this->N_BASES = $this->BASES->size();
}
weight 0.1;

rule N_CIRCUITS : CIRCUITS {
   $this->N_CIRCUITS = $this->CIRCUITS->size();
}
weight 0.1;

rule N_LOOPS : LOOPS {
   $this->N_LOOPS = $this->LOOPS->size();
}
weight 0.1;


rule BASES, MAXIMAL_TRANSVERSAL_PRESENTATION : N_ELEMENTS, TRANSVERSAL_PRESENTATION {
   #Create bipartite graph from edges
   # Elements from the ground set are nodes 0,..,n-1.
   # Sets from the set system are nodes n,..,n+k
   my @edges = ();
   my $n = $this->N_ELEMENTS;
   my $tp = $this->TRANSVERSAL_PRESENTATION;
   for my $i (0 .. $tp->size()-1) {
      for my $x (@{$tp->[$i]}) {
         push @edges, new Set<Int>($x, $n + $i);
      }
   }
   my $g = graph_from_edges(\@edges);
   my $p = polytope::fractional_matching_polytope($g->ADJACENCY);
   $p->LP = new polytope::LinearProgram(LINEAR_OBJECTIVE=>ones_vector<Rational>(scalar(@edges)+1));
   my $maxverts = new Matrix<Rational>($p->VERTICES->minor($p->LP->MAXIMAL_FACE,~[0]));
   my @basislist = map { new Set<Int>(map {  min(@{$g->EDGES->[$_]}) } @{support($_)}) } @{rows($maxverts)};
   #Need to make the list of bases irredundant, some might occur multiple times
   $this->BASES = new Array<Set<Int>>( new Set<Set<Int>>(\@basislist));
   if($maxverts->rows() > 0) {
      my $one_matching = new Set<Int>( map { max(@{$g->EDGES->[$_]}) - $n} @{support($maxverts->row(0))});
      $this->MAXIMAL_TRANSVERSAL_PRESENTATION =
      maximal_transversal_presentation($n,$this->BASES,$tp, $one_matching);
   }
   else {
      $this->MAXIMAL_TRANSVERSAL_PRESENTATION = new IncidenceMatrix(0,$this->N_ELEMENTS);
   }
}
weight 2.10;
precondition : defined(TRANSVERSAL_PRESENTATION);

rule TRANSVERSAL : {
   $this->TRANSVERSAL = 1;
}
weight 0.10;
precondition : defined(TRANSVERSAL_PRESENTATION | MAXIMAL_TRANSVERSAL_PRESENTATION);

rule TRANSVERSAL, TRANSVERSAL_PRESENTATION : N_ELEMENTS, RANK, LOOPS, LATTICE_OF_FLATS, LATTICE_OF_CYCLIC_FLATS {
   my @a = check_transversality($this);
   $this->TRANSVERSAL = $a[0];
   if($a[0]) {
      $this->TRANSVERSAL_PRESENTATION = $a[1];
   }
   else {
      $this->TRANSVERSAL_PRESENTATION = new Array<Set<Int>>();
   }
}
weight 2.10;

rule TRANSVERSAL, MAXIMAL_TRANSVERSAL_PRESENTATION : LATTICE_OF_CYCLIC_FLATS {
   $this->TRANSVERSAL = 1;
   $this->MAXIMAL_TRANSVERSAL_PRESENTATION = nested_presentation($this);
}
weight 1.10;
precondition : NESTED;

rule NESTED : LATTICE_OF_CYCLIC_FLATS {
   $this->NESTED = is_nested_matroid($this);
}
weight 1.10;

rule SIMPLE : CIRCUITS {
    $this->SIMPLE = 1;
    foreach (@{$this->CIRCUITS}){
        if($_->size() < 3){
            $this->SIMPLE = 0;
            last;
        }
    }
}
weight 1.10;

rule PAVING : CIRCUITS, RANK {
    $this->PAVING=( $this->CIRCUITS->size() == 0 or $this->RANK<=minimum([map{$_->size()}@{$this->CIRCUITS}]));
}
weight 1.10;



rule BINARY, BINARY_VECTORS : BASES, N_ELEMENTS, RANK {
    binary_representation($this);
}
weight 2.10;

rule TERNARY, TERNARY_VECTORS : BASES, N_ELEMENTS, RANK {
    ternary_representation($this);
}
weight 5.10;

rule REGULAR : BINARY, TERNARY {
    $this->REGULAR=$this->BINARY && $this->TERNARY; # See [Oxley:Matroid theory (2nd ed.) Thm. 6.6.3]
}
weight 0.1;

rule VECTORS : BINARY_VECTORS, TERNARY_VECTORS {
   #Normalize such that entries 0,1(,2) are used for binary/ternary rep
   my $normalized_ternary = new Matrix( [ map { [map {$_ % 3} @{$_}]} @{rows($this->TERNARY_VECTORS)}]);
   my $normalized_binary  = new Matrix( [ map { [map {$_ % 2} @{$_}]} @{rows($this->BINARY_VECTORS)}]);
   $this->VECTORS=3*($normalized_binary)-2*($normalized_ternary);
}
precondition : REGULAR;
weight 1.10;

rule TUTTE_POLYNOMIAL: CIRCUITS, N_ELEMENTS {
    $this->TUTTE_POLYNOMIAL = tutte_polynomial_from_circuits( $this->N_ELEMENTS,
                                                              $this->CIRCUITS);
}
weight 5.10;


rule BETA_INVARIANT : TUTTE_POLYNOMIAL {
    my $beta=0;
    for(my $i=0;$i<$this->TUTTE_POLYNOMIAL->monomials_as_matrix->rows();++$i){
        if($this->TUTTE_POLYNOMIAL->monomials_as_matrix->row($i)==new Vector("1 0")){
           $beta = new Integer($this->TUTTE_POLYNOMIAL->coefficients_as_vector->[$i]);
           last;
        }
    }
    $this->BETA_INVARIANT=$beta;
}
weight 1.10;

rule SERIES_PARALLEL, CONNECTED : BETA_INVARIANT { # See [David Speyer:tropical linear spaces prop. 6.3]
   if ($this->BETA_INVARIANT==0) {
      $this->CONNECTED=0;
      $this->SERIES_PARALLEL=0;
   } else {
      $this->CONNECTED=1;
      if ($this->BETA_INVARIANT==1) {
         $this->SERIES_PARALLEL=1;
      } else {
         $this->SERIES_PARALLEL=0;
      }
   }
}
weight 0.1;
precondition : N_ELEMENTS {
   $this->N_ELEMENTS >= 2;
}

rule SERIES_PARALLEL : {
   $this->SERIES_PARALLEL = $this->N_ELEMENTS;
}
weight 0.10;
precondition : N_ELEMENTS {
   $this->N_ELEMENTS <= 1;
}

rule UNIFORM : N_ELEMENTS, RANK, N_BASES {
   $this->UNIFORM = ( $this->N_BASES == binomial( $this->N_ELEMENTS, $this->RANK));
}
weight 0.10;

rule LATTICE_OF_FLATS.ADJACENCY, LATTICE_OF_FLATS.DECORATION, LATTICE_OF_FLATS.INVERSE_RANK_MAP, LATTICE_OF_FLATS.TOP_NODE, LATTICE_OF_FLATS.BOTTOM_NODE : MATROID_HYPERPLANES, N_ELEMENTS, RANK {
	my $hy;
	#A rank-0-matroid has no hyperplanes, so we need to treat this separately
	if($this->MATROID_HYPERPLANES->size() == 0) {
		$hy = new IncidenceMatrix(0,$this->N_ELEMENTS);
	}
	else {
		#If the empty set is a hyperplane, we need to tell the incidence matrix its dimension.
		$hy=new IncidenceMatrix<NonSymmetric>(@{$this->MATROID_HYPERPLANES}, $this->N_ELEMENTS);
	}
	$this->LATTICE_OF_FLATS = lattice_of_flats($hy, $this->RANK);
}
weight 6.20;

rule MATROID_HYPERPLANES, N_ELEMENTS, RANK : LATTICE_OF_FLATS {
   my $lof = $this->LATTICE_OF_FLATS;
   $this->N_ELEMENTS = $lof->FACES->[$lof->TOP_NODE]->size();
   my $rank = $this->LATTICE_OF_FLATS->rank();
   $this->RANK = max(0,$rank);
   if($rank  <= 0 ) {
      $this->MATROID_HYPERPLANES = new Array<Set<Int>>();
   }
   else {
      $this->MATROID_HYPERPLANES = new Array<Set<Int>> ([
         map {$lof->FACES->[$_]} @{$lof->nodes_of_rank($rank-1)}
         ]);
   }
}
weight 1.10;
incurs HyperplanePerm;

rule N_FLATS : LATTICE_OF_FLATS {
   $this->N_FLATS = $this->LATTICE_OF_FLATS->N_NODES;
}
weight 0.10;

rule LATTICE_OF_CYCLIC_FLATS.ADJACENCY, LATTICE_OF_CYCLIC_FLATS.DECORATION, LATTICE_OF_CYCLIC_FLATS.INVERSE_RANK_MAP, LATTICE_OF_CYCLIC_FLATS.TOP_NODE, LATTICE_OF_CYCLIC_FLATS.BOTTOM_NODE : LATTICE_OF_FLATS, CIRCUITS, RANK {
   $this->LATTICE_OF_CYCLIC_FLATS = lattice_of_cyclic_flats($this);
}
weight 6.20;

rule N_CYCLIC_FLATS : LATTICE_OF_CYCLIC_FLATS {
   $this->N_CYCLIC_FLATS = $this->LATTICE_OF_CYCLIC_FLATS->N_NODES;
}
weight 0.10;

rule BASES, RANK : LATTICE_OF_CYCLIC_FLATS, N_ELEMENTS {
   my $loc = $this->LATTICE_OF_CYCLIC_FLATS;
   $this->RANK = $loc->rank() + $this->N_ELEMENTS - $loc->DECORATION->[$loc->TOP_NODE]->face->size();
   $this->BASES = bases_from_cyclic_flats($this->N_ELEMENTS, $this->RANK, $loc);
}
weight 6.10;

rule SPLIT_FLACETS : N_ELEMENTS, RANK, POLYTOPE.FACETS, POLYTOPE.AFFINE_HULL, CONNECTED_COMPONENTS {
    split_flacets($this);
}
weight 2.10;

rule SPLIT : SPLIT_FLACETS, CONNECTED_COMPONENTS, CIRCUITS {
    $this->SPLIT=split_compatibility_check($this);
}
weight 2.10;

rule POSITROID : SPLIT_FLACETS, CONNECTED_COMPONENTS {
       my $bool = 1;
       foreach my $S (@{$this->SPLIT_FLACETS}) {
               foreach my $flat (@{$S}){
                       foreach my $comp (@{$this->CONNECTED_COMPONENTS}) {
                               my $set = $comp*$flat;
                               next if( $set->size==0 );
                               my $count = -1;
                               my $pre = -1;
                               for my $i (@{$comp}){
                                       if( $count==-1 && !$set->contains($i) ){
                                               $pre = $i;
                                               $count = 0;
                                               next;
                                       }
                                       if( $set->contains($i) && !$set->contains($pre) ){
                                               ++$count;
                                       }
                                       if( $i==$comp->back && !$set->contains($i) && $set->contains($comp->front)){
                                               ++$count;
                                       }
                                       if($count==2 ){
                                               $bool = 0;
                                               last;
                                       }
                                       $pre  =$i;
                               }
                               last if(!$bool);
                       }
                       last if(!$bool);
               }
       }

       $this->POSITROID = $bool;
}



rule CONNECTED_COMPONENTS : CIRCUITS, N_ELEMENTS{
    $this->CONNECTED_COMPONENTS = connected_components_from_circuits($this->CIRCUITS, $this->N_ELEMENTS);
}
weight 1.10;



rule CONNECTED : N_CONNECTED_COMPONENTS {
   $this->CONNECTED = ($this->N_CONNECTED_COMPONENTS <= 1);
}
weight 0.1;

rule N_CONNECTED_COMPONENTS : CONNECTED_COMPONENTS {
   $this->N_CONNECTED_COMPONENTS = $this->CONNECTED_COMPONENTS->size();
}
weight 0.1;

rule LAMINAR : CIRCUITS, LATTICE_OF_FLATS {
   $this->LAMINAR = is_laminar_matroid($this);
}
weight 2.10;

rule H_VECTOR : BASES, RANK {
   my $bases = $this->BASES;
   my $r = $this->RANK;
   my $h_vector = new Vector<Integer>($r+1);
   foreach (@{$bases}) {
      $h_vector->[$r-internal_activity($_, $bases)]++;
   }
   $this->H_VECTOR=$h_vector;
}

rule F_VECTOR : H_VECTOR {
    my $h = $this->H_VECTOR;
    my $d = $h->dim() - 1;
    my $f = new Vector<Integer>($d);
    for (my $j=1; $j<=$d; $j++) {
        for (my $i=0; $i<=$j; $i++) {
            $f->[$j-1] += binomial($d-$i, $j-$i) * $h->[$i];
        }
    }
    $this->F_VECTOR = $f;
}

rule H_VECTOR : F_VECTOR {
    my $f = $this->F_VECTOR;
    my $d = $f->dim();
    my $h = new Vector<Integer>($d+1);
    $h->[0] = 1;
    for (my $j=1; $j<=$d; $j++) {
        for (my $i=0; $i<=$j; $i++) {
            my $c = binomial($d-$i, $j-$i);
            if ($i>0) {
                $c *= $f->[$i-1];
            }
            if (($j-$i)%2 == 0) {
                $h->[$j] += $c;
            } else {
                $h->[$j] -= $c;
            }
        }
    }
    $this->H_VECTOR = $h;
}

rule REVLEX_BASIS_ENCODING : BASES, RANK, N_ELEMENTS {
    $this->REVLEX_BASIS_ENCODING = bases_to_revlex_encoding($this->BASES, $this->RANK, $this->N_ELEMENTS);
}

rule BASES : REVLEX_BASIS_ENCODING, RANK, N_ELEMENTS {
    $this->BASES = bases_from_revlex_encoding($this->REVLEX_BASIS_ENCODING, $this->RANK, $this->N_ELEMENTS);
}

rule N_AUTOMORPHISMS = AUTOMORPHISM_GROUP.ORDER;

rule CATENARY_G_INVARIANT : LATTICE_OF_FLATS, RANK {
   $this->CATENARY_G_INVARIANT = catenary_g_invariant($this);
}
weight 3.10;

rule G_INVARIANT : N_ELEMENTS, CATENARY_G_INVARIANT {
   $this->G_INVARIANT = g_invariant_from_catenary($this->N_ELEMENTS, $this->CATENARY_G_INVARIANT);
}
weight 3.10;

## USER METHODS ###

# The following four are mainly for backwards compat and convenience, since cocircuits and coloops
# are common terms. However, we want to avoid duplicating data.

# @category Axiom systems
user_method COCIRCUITS {
   return shift->DUAL->CIRCUITS;
}

# @category Enumerative properties
user_method N_COCIRCUITS {
   return shift->DUAL->N_CIRCUITS;
}

# @category Axiom systems
user_method COLOOPS {
   return shift->DUAL->LOOPS;
}

# @category Enumerative properties
user_method N_COLOOPS {
   return shift->DUAL->N_LOOPS;
}


# @category Axiom systems
# calculate the rank of a set with respect to a given matroid
# @return Int
user_method rank(Set) {
   my ($self,$S) = @_;
   my $rk=0;
   for (my $i=0; $i<$self->N_BASES; ++$i) {
       my $inter = $S * $self->BASES->[$i];
       $rk = max($rk, $inter->size());
   }
   return $rk;
}

# @category Advanced properties
# @param Matroid M
# @return Bool Whether this matroid is isomorphic to M
user_method is_isomorphic_to(Matroid) {
   my ($self, $M) = @_;
   return defined(find_row_col_permutation(new IncidenceMatrix($self->BASES), new IncidenceMatrix($M->BASES)));
}

}

# @category Producing a matroid from matroids
# Produces the __dual__ of a given matroid //m//.
# Not quite the same as calling m->[[DUAL]]. The latter returns a subobject and properties of this subobject
# are only computed upon demand.
# This function returns the dual as an independent object by computing its [[BASES]].
# @param Matroid m"
# @return Matroid"
user_function dual(Matroid) {
   my $m = shift;
   return new Matroid(N_ELEMENTS=>$m->N_ELEMENTS, BASES=>$m->DUAL->BASES);
}

# @category Other
# calculate the internal activity of a base with respect to a given ordering of all bases.
# Let the given base B = B_j be the j-th one in the given ordering B_1, B_2, ...
# The internal activity of B_j is the number of "necessary" elements in B_j,
# i.e., the number of elements i in B_j such that B_j - {i} is not a subset of any B_k, k<j.
# @return Int
user_function internal_activity(Set<Int>, Array<Set<Int>>) {
   my ($B, $bases) = @_;
   my $activity = $B->size();
   foreach my $ridge (@{all_subsets_of_k($B, $B->size()-1)}) {
      foreach my $basis (@{$bases}) {
         if ($basis == $B) {
            last;
         }
         if (incl($ridge,$basis) < 0) {
            $activity--;
            last;
         }
      }
   }
   return $activity;
}


# Local Variables:
# mode: perl
# cperl-indent-level: 3
# indent-tabs-mode:nil
# End: