File: matroid_examples.rules

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (407 lines) | stat: -rw-r--r-- 49,679 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#  Copyright (c) 1997-2024
#  Ewgenij Gawrilow, Michael Joswig, and the polymake team
#  Technische Universität Berlin, Germany
#  https://polymake.org
#
#  This program is free software; you can redistribute it and/or modify it
#  under the terms of the GNU General Public License as published by the
#  Free Software Foundation; either version 2, or (at your option) any
#  later version: http://www.gnu.org/licenses/gpl.txt.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#-------------------------------------------------------------------------------

# @category Producing a matroid from scratch
# Create the matroid corresponding to Pappus' Theorem.  
# Realizable if and only if the size of the field is not 2,3 or 5.
# An excluded minor for the field with 5 elements.
# @return Matroid

user_function pappus_matroid() {
    my $m = new Matroid(BASES=> [[0, 1, 3], [0, 1, 4], [0, 1, 5], [0, 1, 6], [0, 1, 7], [0, 1, 8], [0, 2, 3], [0, 2, 4], [0, 2, 5], [0, 2, 6], [0, 2, 7], [0, 2, 8], [0, 3, 4], [0, 3, 5], [0, 3, 6], [0, 3, 7], [0, 3, 8], [0, 4, 5], [0, 4, 6], [0, 4, 7], [0, 5, 6], [0, 5, 8], [0, 6, 7], [0, 6, 8], [0, 7, 8], [1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 2, 6], [1, 2, 7], [1, 2, 8], [1, 3, 4], [1, 3, 5], [1, 3, 6], [1, 3, 7], [1, 4, 5], [1, 4, 6], [1, 4, 7], [1, 4, 8], [1, 5, 7], [1, 5, 8], [1, 6, 7], [1, 6, 8], [1, 7, 8], [2, 3, 4], [2, 3, 5], [2, 3, 6], [2, 3, 8], [2, 4, 5], [2, 4, 7], [2, 4, 8], [2, 5, 6], [2, 5, 7], [2, 5, 8], [2, 6, 7], [2, 6, 8], [2, 7, 8], [3, 4, 6], [3, 4, 7], [3, 4, 8], [3, 5, 6], [3, 5, 7], [3, 5, 8], [3, 6, 7], [3, 6, 8], [3, 7, 8], [4, 5, 6], [4, 5, 7], [4, 5, 8], [4, 6, 7], [4, 6, 8], [4, 7, 8], [5, 6, 7], [5, 6, 8], [5, 7, 8]], 
                       N_ELEMENTS=>9, 
                       RANK=>3);
   $m->name="Pappus matroid";
   $m->description="Matroid corresponding to Pappus' Theorem";
   return $m;
}

# @category Producing a matroid from scratch
# Create the matroid encoding the violation of Pappus' Theorem.  Not realizable over any field.
# An excluded minor for all finite fields with more than four elements.
# Algebraic over all field that do not have characteristic 0.
# @return Matroid

user_function non_pappus_matroid() {
    my $m = new Matroid(BASES=> [[0, 1, 3], [0, 1, 4], [0, 1, 5], [0, 1, 6], [0, 1, 7], [0, 1, 8], [0, 2, 3], [0, 2, 4], [0, 2, 5], [0, 2, 6], [0, 2, 7], [0, 2, 8], [0, 3, 4], [0, 3, 5], [0, 3, 6], [0, 3, 7], [0, 3, 8], [0, 4, 5], [0, 4, 6], [0, 4, 7], [0, 5, 6], [0, 5, 8], [0, 6, 7], [0, 6, 8], [0, 7, 8], [1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 2, 6], [1, 2, 7], [1, 2, 8], [1, 3, 4], [1, 3, 5], [1, 3, 6], [1, 3, 7], [1, 4, 5], [1, 4, 6], [1, 4, 7], [1, 4, 8], [1, 5, 7], [1, 5, 8], [1, 6, 7], [1, 6, 8], [1, 7, 8], [2, 3, 4], [2, 3, 5], [2, 3, 6], [2, 3, 8], [2, 4, 5], [2, 4, 7], [2, 4, 8], [2, 5, 6], [2, 5, 7], [2, 5, 8], [2, 6, 7], [2, 6, 8], [2, 7, 8], [3, 4, 5], [3, 4, 6], [3, 4, 7], [3, 4, 8], [3, 5, 6], [3, 5, 7], [3, 5, 8], [3, 6, 7], [3, 6, 8], [3, 7, 8], [4, 5, 6], [4, 5, 7], [4, 5, 8], [4, 6, 7], [4, 6, 8], [4, 7, 8], [5, 6, 7], [5, 6, 8], [5, 7, 8]],
                       N_ELEMENTS=>9,
                       RANK=>3);
   $m->name="Non-Pappus matroid";
   $m->description="Matroid encoding the violation of Pappus' Theorem";
   return $m;
}

# @category Producing a matroid from scratch
# A regular matroid that's not graphical nor cographical.
# Algebraic over all fields.
# @return Matroid

user_function r10_matroid() {
    my $m = new Matroid(VECTORS=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[-1,1,0,0,1],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[1,0,0,1,-1]]);
    $m->name="R10 matroid";
    $m->description="A regular matroid that's not graphical nor cographical";
    return $m;
}

# @category Producing a matroid from scratch
# A minimal non-representable matroid.
# An excluded minor for all finite fields with more than four elements.
# Non-algebraic.
# @return Matroid

user_function vamos_matroid() {
    my $m = new Matroid(BASES=> [[0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 2, 6], [0, 1, 2, 7], [0, 1, 3, 4], [0, 1, 3, 5], [0, 1, 3, 6], [0, 1, 3, 7], [0, 1, 4, 6], [0, 1, 4, 7], [0, 1, 5, 6], [0, 1, 5, 7], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 3, 6], [0, 2, 3, 7], [0, 2, 4, 5], [0, 2, 4, 6], [0, 2, 4, 7], [0, 2, 5, 6], [0, 2, 5, 7], [0, 2, 6, 7], [0, 3, 4, 5], [0, 3, 4, 6], [0, 3, 4, 7], [0, 3, 5, 6], [0, 3, 5, 7], [0, 3, 6, 7], [0, 4, 5, 6], [0, 4, 5, 7], [0, 4, 6, 7], [0, 5, 6, 7], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3, 7], [1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 5, 6], [1, 2, 5, 7], [1, 2, 6, 7], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 4, 7], [1, 3, 5, 6], [1, 3, 5, 7], [1, 3, 6, 7], [1, 4, 5, 6], [1, 4, 5, 7], [1, 4, 6, 7], [1, 5, 6, 7], [2, 3, 4, 6], [2, 3, 4, 7], [2, 3, 5, 6], [2, 3, 5, 7], [2, 3, 6, 7], [2, 4, 5, 6], [2, 4, 5, 7], [2, 4, 6, 7], [2, 5, 6, 7], [3, 4, 5, 6], [3, 4, 5, 7], [3, 4, 6, 7], [3, 5, 6, 7]],
                       N_ELEMENTS=>8,
                       RANK=>4);
   $m->name="Vamos matroid";
   $m->description="The Vamos matroid, a minimal non-representable matroid";
   return $m;
}


# @category Producing a matroid from scratch
# A matroid related to the Vamos matroid (see [Oxley:matroid theory (2nd ed.) page 72])
# @return Matroid

user_function non_vamos_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 2, 6], [0, 1, 2, 7], [0, 1, 3, 4], [0, 1, 3, 5], [0, 1, 3, 6], [0, 1, 3, 7], [0, 1, 4, 6], [0, 1, 4, 7], [0, 1, 5, 6], [0, 1, 5, 7], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 3, 6], [0, 2, 3, 7], [0, 2, 4, 5], [0, 2, 4, 6], [0, 2, 4, 7], [0, 2, 5, 6], [0, 2, 5, 7], [0, 2, 6, 7], [0, 3, 4, 5], [0, 3, 4, 6], [0, 3, 4, 7], [0, 3, 5, 6], [0, 3, 5, 7], [0, 3, 6, 7], [0, 4, 5, 6], [0, 4, 5, 7], [0, 4, 6, 7], [0, 5, 6, 7], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3, 7], [1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 5, 6], [1, 2, 5, 7], [1, 2, 6, 7], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 4, 7], [1, 3, 5, 6], [1, 3, 5, 7], [1, 3, 6, 7], [1, 4, 5, 6], [1, 4, 5, 7], [1, 4, 6, 7], [1, 5, 6, 7], [2, 3, 4, 6], [2, 3, 4, 7], [2, 3, 5, 6], [2, 3, 5, 7], [2, 4, 5, 6], [2, 4, 5, 7], [2, 4, 6, 7], [2, 5, 6, 7], [3, 4, 5, 6], [3, 4, 5, 7], [3, 4, 6, 7], [3, 5, 6, 7]],
                       N_ELEMENTS=>8,
                       RANK=>4);
   $m->name="Non-Vamos matroid";
   $m->description="The Non-Vamos matroid, a matroid related to the Vamos matroid (see Oxley: Matroid theory (2nd ed.), page 72)";
   return $m;
}

# @category Producing a matroid from scratch
# The only other ternary 3-spike apart from the non-Fano matroid.
# Non binary. Algebraic over all fields.
# @return Matroid
user_function p7_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2], [0, 1, 3], [0, 1, 5], [0, 1, 6], [0, 2, 3], [0, 2, 4], [0, 2, 6], [0, 3, 4], [0, 3, 5], [0, 4, 5], [0, 4, 6], [0, 5, 6], [1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [1, 3, 6], [1, 4, 5], [1, 4, 6], [1, 5, 6], [2, 3, 4], [2, 3, 5], [2, 3, 6], [2, 4, 5], [2, 4, 6], [2, 5, 6], [3, 4, 6], [3, 5, 6], [4, 5, 6]],
                       N_ELEMENTS=>7,
                       RANK=>3);
   $m->name="P7 matroid";
   $m->description="The only other ternary 3-spike apart from the non-Fano matroid";
   return $m;
}

# @category Producing a matroid from scratch
# The repesentation over the reals is obtained from a 3-cube where one face is rotated by 45°. 
# Non-representable if and only if the characeristic of the field is 2. Algebraic over all fields.
# @return Matroid
user_function p8_matroid() {
    my $m = new Matroid(TERNARY_VECTORS=>[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1],[0,1,1,2],[1,0,1,1],[1,1,0,1],[2,1,1,0]],
                        BASES=>[[0,1,2,3],[0,1,2,4],[0,1,2,5],[0,1,2,6],[0,1,3,4],[0,1,3,5],[0,1,3,7],[0,1,4,5],[0,1,4,6],[0,1,4,7],[0,1,5,6],[0,1,5,7],[0,1,6,7],[0,2,3,4],[0,2,3,6],[0,2,3,7],[0,2,4,5],[0,2,4,6],[0,2,4,7],[0,2,5,6],[0,2,5,7],[0,2,6,7],[0,3,4,5],[0,3,4,6],[0,3,5,6],[0,3,5,7],[0,3,6,7],[0,4,5,7],[0,4,6,7],[0,5,6,7],[1,2,3,5],[1,2,3,6],[1,2,3,7],[1,2,4,5],[1,2,4,6],[1,2,4,7],[1,2,5,7],[1,2,6,7],[1,3,4,5],[1,3,4,6],[1,3,4,7],[1,3,5,6],[1,3,5,7],[1,3,6,7],[1,4,5,6],[1,4,6,7],[1,5,6,7],[2,3,4,5],[2,3,4,6],[2,3,4,7],[2,3,5,6],[2,3,5,7],[2,3,6,7],[2,4,5,6],[2,4,5,7],[2,5,6,7],[3,4,5,6],[3,4,5,7],[3,4,6,7],[4,5,6,7]],
                        N_ELEMENTS=>8,
                        RANK=>4);
   $m->name="P8 matroid";
   $m->description="The repesentation over the reals is obtained from a 3-cube where one face is rotated by 45°.";
   return $m;
}

# @category Producing a matroid from scratch
# Obtained  from [[p8_matroid]] by relaxing its only pair of disjoint circuit-hyperplanes.  
# @return Matroid
user_function non_p8_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 2, 6], [0, 1, 2, 7], [0, 1, 3, 4], [0, 1, 3, 5], [0, 1, 3, 7], [0, 1, 4, 5], [0, 1, 4, 6], [0, 1, 4, 7], [0, 1, 5, 6], [0, 1, 6, 7], [0, 2, 3, 4], [0, 2, 3, 6], [0, 2, 3, 7], [0, 2, 4, 5], [0, 2, 4, 6], [0, 2, 4, 7], [0, 2, 5, 6], [0, 2, 5, 7], [0, 3, 4, 5], [0, 3, 4, 6], [0, 3, 5, 6], [0, 3, 5, 7], [0, 3, 6, 7], [0, 4, 5, 7], [0, 4, 6, 7], [0, 5, 6, 7], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3, 7], [1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 5, 7], [1, 2, 6, 7], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 4, 7], [1, 3, 5, 6], [1, 3, 5, 7], [1, 3, 6, 7], [1, 4, 5, 6], [1, 4, 5, 7], [1, 5, 6, 7], [2, 3, 4, 5], [2, 3, 4, 6], [2, 3, 4, 7], [2, 3, 5, 6], [2, 3, 5, 7], [2, 3, 6, 7], [2, 4, 5, 6], [2, 4, 6, 7], [2, 5, 6, 7], [3, 4, 5, 6], [3, 4, 5, 7], [3, 4, 6, 7], [4, 5, 6, 7]],
                       N_ELEMENTS=>8,
                       RANK=>4);
   $m->name="Non-P8 matroid";
   $m->description="Obtained  from the P8 matroid by relaxing its only pair of disjoint circuit-hyperplanes";
   return $m;
}

# @category Producing a matroid from scratch
# An excluded minor for some properties (see [Oxley:matroid theory (2nd ed.) page 650]).
# Non binary. Algebraic over all fields.
# @return Matroid
user_function j_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 7], [0, 1, 3, 4], [0, 1, 3, 6], [0, 1, 4, 6], [0, 1, 4, 7], [0, 1, 6, 7], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5], [0, 2, 4, 7], [0, 2, 5, 7], [0, 3, 4, 5], [0, 3, 4, 6], [0, 3, 5, 6], [0, 4, 5, 6], [0, 4, 5, 7], [0, 4, 6, 7], [0, 5, 6, 7], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3, 7], [1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 5, 7], [1, 2, 6, 7], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 4, 7], [1, 3, 5, 6], [1, 3, 6, 7], [1, 4, 5, 6], [1, 4, 5, 7], [1, 4, 6, 7], [1, 5, 6, 7], [2, 3, 4, 5], [2, 3, 4, 6], [2, 3, 4, 7], [2, 3, 5, 6], [2, 3, 5, 7], [2, 4, 5, 6], [2, 4, 5, 7], [2, 4, 6, 7], [2, 5, 6, 7], [3, 4, 5, 6], [3, 4, 5, 7], [3, 4, 6, 7], [3, 5, 6, 7]],
                       N_ELEMENTS=>8,
                       RANK=>4);
   $m->name="J-matroid";
   $m->description="An excluded minor for some properties (see Oxley: Matroid theory (2nd ed.), page 650)";
   return $m;
}

# @category Producing a matroid from scratch
# The 4-point planes are the six faces of the cube an the two twisted plannes.
# Identically self-dual. Representable over all field with more then 4 elements and algebraic over all fields.
# @return Matroid
user_function l8_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 2, 6], [0, 1, 3, 4], [0, 1, 3, 5], [0, 1, 3, 6], [0, 1, 3, 7], [0, 1, 4, 5], [0, 1, 4, 6], [0, 1, 4, 7], [0, 1, 5, 7], [0, 1, 6, 7], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 3, 6], [0, 2, 3, 7], [0, 2, 4, 5], [0, 2, 4, 7], [0, 2, 5, 6], [0, 2, 5, 7], [0, 2, 6, 7], [0, 3, 4, 5], [0, 3, 4, 6], [0, 3, 4, 7], [0, 3, 5, 6], [0, 3, 5, 7], [0, 3, 6, 7], [0, 4, 5, 6], [0, 4, 6, 7], [0, 5, 6, 7], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 7], [1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 5, 6], [1, 2, 5, 7], [1, 2, 6, 7], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 4, 7], [1, 3, 5, 6], [1, 3, 6, 7], [1, 4, 5, 6], [1, 4, 5, 7], [1, 4, 6, 7], [1, 5, 6, 7], [2, 3, 4, 5], [2, 3, 4, 6], [2, 3, 5, 6], [2, 3, 5, 7], [2, 3, 6, 7], [2, 4, 5, 6], [2, 4, 5, 7], [2, 4, 6, 7], [2, 5, 6, 7], [3, 4, 5, 7], [3, 4, 6, 7], [3, 5, 6, 7], [4, 5, 6, 7]],
                       N_ELEMENTS=>8,
                       RANK=>4);
   $m->name="L8 matroid";
   $m->description="The 4-point planes are the six faces of the cube an the two twisted plannes.
";
   return $m;
}

# @category Producing a matroid from scratch
# An excluded minor for the dyadic matroids (see [Oxley:matroid theory (2nd ed.) page 558]).
# @return Matroid
user_function n1_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 3, 4], [0, 1, 2, 3, 5], [0, 1, 2, 3, 6], [0, 1, 2, 3, 7], [0, 1, 2, 3, 8], [0, 1, 2, 4, 7], [0, 1, 2, 4, 8], [0, 1, 2, 4, 9], [0, 1, 2, 5, 7], [0, 1, 2, 5, 8], [0, 1, 2, 5, 9], [0, 1, 2, 6, 7], [0, 1, 2, 6, 8], [0, 1, 2, 6, 9], [0, 1, 2, 7, 9], [0, 1, 2, 8, 9], [0, 1, 3, 4, 6], [0, 1, 3, 4, 7], [0, 1, 3, 4, 9], [0, 1, 3, 5, 6], [0, 1, 3, 5, 7], [0, 1, 3, 5, 9], [0, 1, 3, 6, 7], [0, 1, 3, 6, 8], [0, 1, 3, 6, 9], [0, 1, 3, 7, 8], [0, 1, 3, 7, 9], [0, 1, 3, 8, 9], [0, 1, 4, 6, 7], [0, 1, 4, 6, 8], [0, 1, 4, 6, 9], [0, 1, 4, 7, 8], [0, 1, 4, 8, 9], [0, 1, 5, 6, 7], [0, 1, 5, 6, 8], [0, 1, 5, 6, 9], [0, 1, 5, 7, 8], [0, 1, 5, 8, 9], [0, 1, 6, 7, 8], [0, 1, 6, 7, 9], [0, 1, 7, 8, 9], [0, 2, 3, 4, 5], [0, 2, 3, 4, 6], [0, 2, 3, 4, 9], [0, 2, 3, 5, 6], [0, 2, 3, 5, 7], [0, 2, 3, 5, 8], [0, 2, 3, 5, 9], [0, 2, 3, 6, 7], [0, 2, 3, 6, 8], [0, 2, 3, 6, 9], [0, 2, 3, 7, 9], [0, 2, 3, 8, 9], [0, 2, 4, 5, 7], [0, 2, 4, 5, 8], [0, 2, 4, 5, 9], [0, 2, 4, 6, 7], [0, 2, 4, 6, 8], [0, 2, 4, 6, 9], [0, 2, 4, 7, 9], [0, 2, 4, 8, 9], [0, 2, 5, 6, 7], [0, 2, 5, 6, 8], [0, 2, 5, 6, 9], [0, 2, 6, 7, 9], [0, 2, 6, 8, 9], [0, 3, 4, 5, 6], [0, 3, 4, 5, 7], [0, 3, 4, 5, 9], [0, 3, 4, 6, 7], [0, 3, 4, 6, 9], [0, 3, 4, 7, 9], [0, 3, 5, 6, 8], [0, 3, 5, 7, 8], [0, 3, 5, 8, 9], [0, 3, 6, 7, 8], [0, 3, 6, 8, 9], [0, 3, 7, 8, 9], [0, 4, 5, 6, 7], [0, 4, 5, 6, 8], [0, 4, 5, 6, 9], [0, 4, 5, 7, 8], [0, 4, 5, 8, 9], [0, 4, 6, 7, 8], [0, 4, 6, 7, 9], [0, 4, 6, 8, 9], [0, 4, 7, 8, 9], [0, 5, 6, 7, 8], [0, 5, 6, 8, 9], [0, 6, 7, 8, 9], [1, 2, 3, 4, 5], [1, 2, 3, 4, 8], [1, 2, 3, 4, 9], [1, 2, 3, 5, 6], [1, 2, 3, 5, 7], [1, 2, 3, 5, 9], [1, 2, 3, 6, 8], [1, 2, 3, 6, 9], [1, 2, 3, 7, 8], [1, 2, 3, 7, 9], [1, 2, 3, 8, 9], [1, 2, 4, 5, 7], [1, 2, 4, 5, 8], [1, 2, 4, 5, 9], [1, 2, 4, 7, 8], [1, 2, 4, 7, 9], [1, 2, 5, 6, 7], [1, 2, 5, 6, 8], [1, 2, 5, 6, 9], [1, 2, 5, 7, 8], [1, 2, 5, 7, 9], [1, 2, 5, 8, 9], [1, 2, 6, 7, 8], [1, 2, 6, 7, 9], [1, 2, 7, 8, 9], [1, 3, 4, 5, 6], [1, 3, 4, 5, 7], [1, 3, 4, 5, 9], [1, 3, 4, 6, 8], [1, 3, 4, 6, 9], [1, 3, 4, 7, 8], [1, 3, 4, 7, 9], [1, 3, 4, 8, 9], [1, 3, 5, 6, 7], [1, 3, 5, 7, 9], [1, 3, 6, 7, 8], [1, 3, 6, 7, 9], [1, 3, 7, 8, 9], [1, 4, 5, 6, 7], [1, 4, 5, 6, 8], [1, 4, 5, 6, 9], [1, 4, 5, 7, 8], [1, 4, 5, 8, 9], [1, 4, 6, 7, 8], [1, 4, 6, 7, 9], [1, 4, 7, 8, 9], [1, 5, 6, 7, 8], [1, 5, 6, 7, 9], [1, 5, 7, 8, 9], [2, 3, 4, 5, 6], [2, 3, 4, 5, 8], [2, 3, 4, 5, 9], [2, 3, 4, 6, 8], [2, 3, 4, 6, 9], [2, 3, 4, 8, 9], [2, 3, 5, 6, 7], [2, 3, 5, 6, 8], [2, 3, 5, 7, 8], [2, 3, 5, 7, 9], [2, 3, 5, 8, 9], [2, 3, 6, 7, 8], [2, 3, 6, 7, 9], [2, 3, 6, 8, 9], [2, 3, 7, 8, 9], [2, 4, 5, 6, 7], [2, 4, 5, 6, 8], [2, 4, 5, 6, 9], [2, 4, 5, 7, 8], [2, 4, 5, 7, 9], [2, 4, 5, 8, 9], [2, 4, 6, 7, 8], [2, 4, 6, 7, 9], [2, 4, 7, 8, 9], [2, 5, 6, 7, 8], [2, 5, 6, 7, 9], [2, 5, 6, 8, 9], [2, 6, 7, 8, 9], [3, 4, 5, 6, 7], [3, 4, 5, 6, 8], [3, 4, 5, 7, 8], [3, 4, 5, 7, 9], [3, 4, 5, 8, 9], [3, 4, 6, 7, 8], [3, 4, 6, 7, 9], [3, 4, 6, 8, 9], [3, 4, 7, 8, 9], [3, 5, 6, 7, 8], [3, 5, 7, 8, 9], [3, 6, 7, 8, 9], [4, 5, 6, 7, 9], [4, 5, 6, 8, 9], [4, 5, 7, 8, 9], [4, 6, 7, 8, 9], [5, 6, 7, 8, 9]],
                       N_ELEMENTS=>10,
                       RANK=>5);
   $m->name="N1 matroid";
   $m->description="An excluded minor for the dyadic matroids";
   return $m;
}

# @category Producing a matroid from scratch
# An excluded minor for the dyadic matroids (see [Oxley:matroid theory (2nd ed.) page 558]).
# @return Matroid
user_function n2_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 6], [0, 1, 2, 3, 4, 7], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4, 9], [0, 1, 2, 3, 4, 11], [0, 1, 2, 3, 5, 6], [0, 1, 2, 3, 5, 10], [0, 1, 2, 3, 5, 11], [0, 1, 2, 3, 6, 7], [0, 1, 2, 3, 6, 8], [0, 1, 2, 3, 6, 9], [0, 1, 2, 3, 6, 10], [0, 1, 2, 3, 7, 10], [0, 1, 2, 3, 7, 11], [0, 1, 2, 3, 8, 10], [0, 1, 2, 3, 8, 11], [0, 1, 2, 3, 9, 10], [0, 1, 2, 3, 9, 11], [0, 1, 2, 3, 10, 11], [0, 1, 2, 4, 5, 8], [0, 1, 2, 4, 5, 9], [0, 1, 2, 4, 5, 10], [0, 1, 2, 4, 6, 8], [0, 1, 2, 4, 6, 9], [0, 1, 2, 4, 6, 10], [0, 1, 2, 4, 7, 8], [0, 1, 2, 4, 7, 9], [0, 1, 2, 4, 7, 10], [0, 1, 2, 4, 8, 10], [0, 1, 2, 4, 8, 11], [0, 1, 2, 4, 9, 10], [0, 1, 2, 4, 9, 11], [0, 1, 2, 4, 10, 11], [0, 1, 2, 5, 6, 8], [0, 1, 2, 5, 6, 9], [0, 1, 2, 5, 6, 10], [0, 1, 2, 5, 8, 10], [0, 1, 2, 5, 8, 11], [0, 1, 2, 5, 9, 10], [0, 1, 2, 5, 9, 11], [0, 1, 2, 5, 10, 11], [0, 1, 2, 6, 7, 8], [0, 1, 2, 6, 7, 9], [0, 1, 2, 6, 7, 10], [0, 1, 2, 7, 8, 10], [0, 1, 2, 7, 8, 11], [0, 1, 2, 7, 9, 10], [0, 1, 2, 7, 9, 11], [0, 1, 2, 7, 10, 11], [0, 1, 3, 4, 5, 7], [0, 1, 3, 4, 5, 8], [0, 1, 3, 4, 5, 11], [0, 1, 3, 4, 6, 7], [0, 1, 3, 4, 6, 8], [0, 1, 3, 4, 6, 11], [0, 1, 3, 4, 7, 8], [0, 1, 3, 4, 7, 9], [0, 1, 3, 4, 7, 11], [0, 1, 3, 4, 8, 9], [0, 1, 3, 4, 9, 11], [0, 1, 3, 5, 6, 7], [0, 1, 3, 5, 6, 8], [0, 1, 3, 5, 6, 11], [0, 1, 3, 5, 7, 10], [0, 1, 3, 5, 7, 11], [0, 1, 3, 5, 8, 10], [0, 1, 3, 5, 8, 11], [0, 1, 3, 5, 10, 11], [0, 1, 3, 6, 7, 8], [0, 1, 3, 6, 7, 9], [0, 1, 3, 6, 7, 10], [0, 1, 3, 6, 7, 11], [0, 1, 3, 6, 8, 9], [0, 1, 3, 6, 8, 10], [0, 1, 3, 6, 8, 11], [0, 1, 3, 6, 9, 11], [0, 1, 3, 6, 10, 11], [0, 1, 3, 7, 8, 10], [0, 1, 3, 7, 8, 11], [0, 1, 3, 7, 9, 10], [0, 1, 3, 7, 9, 11], [0, 1, 3, 7, 10, 11], [0, 1, 3, 8, 9, 10], [0, 1, 3, 8, 9, 11], [0, 1, 3, 9, 10, 11], [0, 1, 4, 5, 7, 8], [0, 1, 4, 5, 7, 9], [0, 1, 4, 5, 7, 10], [0, 1, 4, 5, 8, 9], [0, 1, 4, 5, 8, 10], [0, 1, 4, 5, 8, 11], [0, 1, 4, 5, 9, 11], [0, 1, 4, 5, 10, 11], [0, 1, 4, 6, 7, 8], [0, 1, 4, 6, 7, 9], [0, 1, 4, 6, 7, 10], [0, 1, 4, 6, 8, 9], [0, 1, 4, 6, 8, 10], [0, 1, 4, 6, 8, 11], [0, 1, 4, 6, 9, 11], [0, 1, 4, 6, 10, 11], [0, 1, 4, 7, 8, 9], [0, 1, 4, 7, 8, 10], [0, 1, 4, 7, 8, 11], [0, 1, 4, 7, 9, 10], [0, 1, 4, 7, 9, 11], [0, 1, 4, 7, 10, 11], [0, 1, 4, 8, 9, 10], [0, 1, 4, 8, 9, 11], [0, 1, 4, 9, 10, 11], [0, 1, 5, 6, 7, 8], [0, 1, 5, 6, 7, 9], [0, 1, 5, 6, 7, 10], [0, 1, 5, 6, 8, 9], [0, 1, 5, 6, 8, 10], [0, 1, 5, 6, 8, 11], [0, 1, 5, 6, 9, 11], [0, 1, 5, 6, 10, 11], [0, 1, 5, 7, 8, 10], [0, 1, 5, 7, 8, 11], [0, 1, 5, 7, 9, 10], [0, 1, 5, 7, 9, 11], [0, 1, 5, 7, 10, 11], [0, 1, 5, 8, 9, 10], [0, 1, 5, 8, 9, 11], [0, 1, 5, 9, 10, 11], [0, 1, 6, 7, 8, 9], [0, 1, 6, 7, 8, 10], [0, 1, 6, 7, 8, 11], [0, 1, 6, 7, 9, 11], [0, 1, 6, 7, 10, 11], [0, 1, 7, 8, 9, 10], [0, 1, 7, 8, 9, 11], [0, 1, 7, 9, 10, 11], [0, 2, 3, 4, 5, 6], [0, 2, 3, 4, 5, 7], [0, 2, 3, 4, 5, 11], [0, 2, 3, 4, 6, 8], [0, 2, 3, 4, 6, 9], [0, 2, 3, 4, 7, 8], [0, 2, 3, 4, 7, 9], [0, 2, 3, 4, 8, 11], [0, 2, 3, 4, 9, 11], [0, 2, 3, 5, 6, 7], [0, 2, 3, 5, 6, 10], [0, 2, 3, 5, 7, 10], [0, 2, 3, 5, 7, 11], [0, 2, 3, 5, 10, 11], [0, 2, 3, 6, 7, 8], [0, 2, 3, 6, 7, 9], [0, 2, 3, 6, 8, 10], [0, 2, 3, 6, 9, 10], [0, 2, 3, 7, 8, 10], [0, 2, 3, 7, 8, 11], [0, 2, 3, 7, 9, 10], [0, 2, 3, 7, 9, 11], [0, 2, 3, 8, 10, 11], [0, 2, 3, 9, 10, 11], [0, 2, 4, 5, 6, 8], [0, 2, 4, 5, 6, 9], [0, 2, 4, 5, 6, 10], [0, 2, 4, 5, 7, 8], [0, 2, 4, 5, 7, 9], [0, 2, 4, 5, 7, 10], [0, 2, 4, 5, 8, 11], [0, 2, 4, 5, 9, 11], [0, 2, 4, 5, 10, 11], [0, 2, 4, 6, 8, 10], [0, 2, 4, 6, 9, 10], [0, 2, 4, 7, 8, 10], [0, 2, 4, 7, 9, 10], [0, 2, 4, 8, 10, 11], [0, 2, 4, 9, 10, 11], [0, 2, 5, 6, 7, 8], [0, 2, 5, 6, 7, 9], [0, 2, 5, 6, 7, 10], [0, 2, 5, 6, 8, 10], [0, 2, 5, 6, 9, 10], [0, 2, 5, 7, 8, 10], [0, 2, 5, 7, 8, 11], [0, 2, 5, 7, 9, 10], [0, 2, 5, 7, 9, 11], [0, 2, 5, 7, 10, 11], [0, 2, 5, 8, 10, 11], [0, 2, 5, 9, 10, 11], [0, 2, 6, 7, 8, 10], [0, 2, 6, 7, 9, 10], [0, 2, 7, 8, 10, 11], [0, 2, 7, 9, 10, 11], [0, 3, 4, 5, 6, 7], [0, 3, 4, 5, 6, 8], [0, 3, 4, 5, 6, 11], [0, 3, 4, 5, 7, 8], [0, 3, 4, 5, 7, 11], [0, 3, 4, 5, 8, 11], [0, 3, 4, 6, 7, 8], [0, 3, 4, 6, 7, 9], [0, 3, 4, 6, 8, 9], [0, 3, 4, 6, 8, 11], [0, 3, 4, 6, 9, 11], [0, 3, 4, 7, 8, 9], [0, 3, 4, 7, 8, 11], [0, 3, 4, 7, 9, 11], [0, 3, 4, 8, 9, 11], [0, 3, 5, 6, 7, 8], [0, 3, 5, 6, 7, 10], [0, 3, 5, 6, 7, 11], [0, 3, 5, 6, 8, 10], [0, 3, 5, 6, 10, 11], [0, 3, 5, 7, 8, 10], [0, 3, 5, 7, 8, 11], [0, 3, 5, 7, 10, 11], [0, 3, 5, 8, 10, 11], [0, 3, 6, 7, 8, 9], [0, 3, 6, 7, 8, 10], [0, 3, 6, 7, 8, 11], [0, 3, 6, 7, 9, 10], [0, 3, 6, 7, 9, 11], [0, 3, 6, 8, 9, 10], [0, 3, 6, 8, 10, 11], [0, 3, 6, 9, 10, 11], [0, 3, 7, 8, 9, 10], [0, 3, 7, 8, 9, 11], [0, 3, 7, 8, 10, 11], [0, 3, 7, 9, 10, 11], [0, 3, 8, 9, 10, 11], [0, 4, 5, 6, 7, 8], [0, 4, 5, 6, 7, 9], [0, 4, 5, 6, 7, 10], [0, 4, 5, 6, 8, 9], [0, 4, 5, 6, 8, 10], [0, 4, 5, 6, 8, 11], [0, 4, 5, 6, 9, 11], [0, 4, 5, 6, 10, 11], [0, 4, 5, 7, 8, 9], [0, 4, 5, 7, 8, 10], [0, 4, 5, 7, 8, 11], [0, 4, 5, 7, 9, 11], [0, 4, 5, 7, 10, 11], [0, 4, 5, 8, 9, 11], [0, 4, 5, 8, 10, 11], [0, 4, 6, 7, 8, 10], [0, 4, 6, 7, 9, 10], [0, 4, 6, 8, 9, 10], [0, 4, 6, 8, 10, 11], [0, 4, 6, 9, 10, 11], [0, 4, 7, 8, 9, 10], [0, 4, 7, 8, 10, 11], [0, 4, 7, 9, 10, 11], [0, 4, 8, 9, 10, 11], [0, 5, 6, 7, 8, 9], [0, 5, 6, 7, 8, 11], [0, 5, 6, 7, 9, 10], [0, 5, 6, 7, 9, 11], [0, 5, 6, 7, 10, 11], [0, 5, 6, 8, 9, 10], [0, 5, 6, 8, 10, 11], [0, 5, 6, 9, 10, 11], [0, 5, 7, 8, 9, 10], [0, 5, 7, 8, 9, 11], [0, 5, 7, 8, 10, 11], [0, 5, 7, 9, 10, 11], [0, 5, 8, 9, 10, 11], [0, 6, 7, 8, 9, 10], [0, 6, 7, 8, 10, 11], [0, 6, 7, 9, 10, 11], [0, 7, 8, 9, 10, 11], [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 9], [1, 2, 3, 4, 5, 10], [1, 2, 3, 4, 5, 11], [1, 2, 3, 4, 6, 7], [1, 2, 3, 4, 6, 8], [1, 2, 3, 4, 6, 9], [1, 2, 3, 4, 6, 10], [1, 2, 3, 4, 6, 11], [1, 2, 3, 4, 7, 9], [1, 2, 3, 4, 7, 10], [1, 2, 3, 4, 7, 11], [1, 2, 3, 4, 8, 9], [1, 2, 3, 4, 8, 10], [1, 2, 3, 4, 8, 11], [1, 2, 3, 4, 9, 10], [1, 2, 3, 4, 10, 11], [1, 2, 3, 5, 6, 9], [1, 2, 3, 5, 6, 10], [1, 2, 3, 5, 6, 11], [1, 2, 3, 5, 9, 10], [1, 2, 3, 5, 9, 11], [1, 2, 3, 6, 7, 9], [1, 2, 3, 6, 7, 10], [1, 2, 3, 6, 7, 11], [1, 2, 3, 6, 8, 9], [1, 2, 3, 6, 8, 10], [1, 2, 3, 6, 8, 11], [1, 2, 3, 6, 9, 11], [1, 2, 3, 6, 10, 11], [1, 2, 3, 7, 9, 10], [1, 2, 3, 7, 9, 11], [1, 2, 3, 8, 9, 10], [1, 2, 3, 8, 9, 11], [1, 2, 3, 9, 10, 11], [1, 2, 4, 5, 6, 8], [1, 2, 4, 5, 6, 9], [1, 2, 4, 5, 6, 10], [1, 2, 4, 5, 8, 9], [1, 2, 4, 5, 8, 10], [1, 2, 4, 5, 8, 11], [1, 2, 4, 5, 9, 10], [1, 2, 4, 5, 9, 11], [1, 2, 4, 5, 10, 11], [1, 2, 4, 6, 7, 8], [1, 2, 4, 6, 7, 9], [1, 2, 4, 6, 7, 10], [1, 2, 4, 6, 8, 9], [1, 2, 4, 6, 8, 10], [1, 2, 4, 6, 8, 11], [1, 2, 4, 6, 9, 11], [1, 2, 4, 6, 10, 11], [1, 2, 4, 7, 8, 9], [1, 2, 4, 7, 8, 10], [1, 2, 4, 7, 8, 11], [1, 2, 4, 7, 9, 10], [1, 2, 4, 7, 9, 11], [1, 2, 4, 7, 10, 11], [1, 2, 4, 8, 9, 10], [1, 2, 4, 8, 9, 11], [1, 2, 4, 9, 10, 11], [1, 2, 5, 6, 8, 9], [1, 2, 5, 6, 8, 10], [1, 2, 5, 6, 8, 11], [1, 2, 5, 6, 9, 11], [1, 2, 5, 6, 10, 11], [1, 2, 5, 8, 9, 10], [1, 2, 5, 8, 9, 11], [1, 2, 5, 9, 10, 11], [1, 2, 6, 7, 8, 9], [1, 2, 6, 7, 8, 10], [1, 2, 6, 7, 8, 11], [1, 2, 6, 7, 9, 11], [1, 2, 6, 7, 10, 11], [1, 2, 7, 8, 9, 10], [1, 2, 7, 8, 9, 11], [1, 2, 7, 9, 10, 11], [1, 3, 4, 5, 6, 7], [1, 3, 4, 5, 6, 8], [1, 3, 4, 5, 6, 11], [1, 3, 4, 5, 7, 9], [1, 3, 4, 5, 7, 10], [1, 3, 4, 5, 7, 11], [1, 3, 4, 5, 8, 9], [1, 3, 4, 5, 8, 10], [1, 3, 4, 5, 8, 11], [1, 3, 4, 5, 9, 11], [1, 3, 4, 5, 10, 11], [1, 3, 4, 6, 7, 8], [1, 3, 4, 6, 7, 9], [1, 3, 4, 6, 7, 10], [1, 3, 4, 6, 8, 9], [1, 3, 4, 6, 8, 10], [1, 3, 4, 6, 8, 11], [1, 3, 4, 6, 9, 11], [1, 3, 4, 6, 10, 11], [1, 3, 4, 7, 8, 9], [1, 3, 4, 7, 8, 10], [1, 3, 4, 7, 8, 11], [1, 3, 4, 7, 9, 10], [1, 3, 4, 7, 9, 11], [1, 3, 4, 7, 10, 11], [1, 3, 4, 8, 9, 10], [1, 3, 4, 8, 9, 11], [1, 3, 4, 9, 10, 11], [1, 3, 5, 6, 7, 9], [1, 3, 5, 6, 7, 10], [1, 3, 5, 6, 7, 11], [1, 3, 5, 6, 8, 9], [1, 3, 5, 6, 8, 10], [1, 3, 5, 6, 8, 11], [1, 3, 5, 6, 9, 11], [1, 3, 5, 6, 10, 11], [1, 3, 5, 7, 9, 10], [1, 3, 5, 7, 9, 11], [1, 3, 5, 8, 9, 10], [1, 3, 5, 8, 9, 11], [1, 3, 5, 9, 10, 11], [1, 3, 6, 7, 8, 9], [1, 3, 6, 7, 8, 10], [1, 3, 6, 7, 8, 11], [1, 3, 6, 7, 9, 11], [1, 3, 6, 7, 10, 11], [1, 3, 7, 8, 9, 10], [1, 3, 7, 8, 9, 11], [1, 3, 7, 9, 10, 11], [1, 4, 5, 6, 7, 8], [1, 4, 5, 6, 7, 9], [1, 4, 5, 6, 7, 10], [1, 4, 5, 6, 8, 9], [1, 4, 5, 6, 8, 10], [1, 4, 5, 6, 8, 11], [1, 4, 5, 6, 9, 11], [1, 4, 5, 6, 10, 11], [1, 4, 5, 7, 8, 9], [1, 4, 5, 7, 8, 10], [1, 4, 5, 7, 8, 11], [1, 4, 5, 7, 9, 10], [1, 4, 5, 7, 9, 11], [1, 4, 5, 7, 10, 11], [1, 4, 5, 8, 9, 10], [1, 4, 5, 8, 9, 11], [1, 4, 5, 9, 10, 11], [1, 5, 6, 7, 8, 9], [1, 5, 6, 7, 8, 10], [1, 5, 6, 7, 8, 11], [1, 5, 6, 7, 9, 11], [1, 5, 6, 7, 10, 11], [1, 5, 7, 8, 9, 10], [1, 5, 7, 8, 9, 11], [1, 5, 7, 9, 10, 11], [2, 3, 4, 5, 6, 7], [2, 3, 4, 5, 6, 9], [2, 3, 4, 5, 6, 10], [2, 3, 4, 5, 6, 11], [2, 3, 4, 5, 7, 9], [2, 3, 4, 5, 7, 10], [2, 3, 4, 5, 7, 11], [2, 3, 4, 5, 9, 11], [2, 3, 4, 5, 10, 11], [2, 3, 4, 6, 7, 8], [2, 3, 4, 6, 7, 9], [2, 3, 4, 6, 8, 9], [2, 3, 4, 6, 8, 10], [2, 3, 4, 6, 8, 11], [2, 3, 4, 6, 9, 10], [2, 3, 4, 6, 9, 11], [2, 3, 4, 7, 8, 9], [2, 3, 4, 7, 8, 10], [2, 3, 4, 7, 8, 11], [2, 3, 4, 7, 9, 10], [2, 3, 4, 7, 9, 11], [2, 3, 4, 8, 9, 11], [2, 3, 4, 8, 10, 11], [2, 3, 4, 9, 10, 11], [2, 3, 5, 6, 7, 9], [2, 3, 5, 6, 7, 10], [2, 3, 5, 6, 7, 11], [2, 3, 5, 6, 9, 10], [2, 3, 5, 6, 10, 11], [2, 3, 5, 7, 9, 10], [2, 3, 5, 7, 9, 11], [2, 3, 5, 9, 10, 11], [2, 3, 6, 7, 8, 9], [2, 3, 6, 7, 8, 10], [2, 3, 6, 7, 8, 11], [2, 3, 6, 7, 9, 10], [2, 3, 6, 7, 9, 11], [2, 3, 6, 8, 9, 10], [2, 3, 6, 8, 10, 11], [2, 3, 6, 9, 10, 11], [2, 3, 7, 8, 9, 10], [2, 3, 7, 8, 9, 11], [2, 3, 8, 9, 10, 11], [2, 4, 5, 6, 7, 8], [2, 4, 5, 6, 7, 9], [2, 4, 5, 6, 7, 10], [2, 4, 5, 6, 8, 9], [2, 4, 5, 6, 8, 10], [2, 4, 5, 6, 8, 11], [2, 4, 5, 6, 9, 10], [2, 4, 5, 6, 9, 11], [2, 4, 5, 6, 10, 11], [2, 4, 5, 7, 8, 9], [2, 4, 5, 7, 8, 10], [2, 4, 5, 7, 8, 11], [2, 4, 5, 7, 9, 10], [2, 4, 5, 7, 9, 11], [2, 4, 5, 7, 10, 11], [2, 4, 5, 8, 9, 11], [2, 4, 5, 8, 10, 11], [2, 4, 5, 9, 10, 11], [2, 4, 6, 7, 8, 10], [2, 4, 6, 7, 9, 10], [2, 4, 6, 8, 9, 10], [2, 4, 6, 8, 10, 11], [2, 4, 6, 9, 10, 11], [2, 4, 7, 8, 9, 10], [2, 4, 7, 8, 10, 11], [2, 4, 7, 9, 10, 11], [2, 4, 8, 9, 10, 11], [2, 5, 6, 7, 8, 9], [2, 5, 6, 7, 8, 10], [2, 5, 6, 7, 8, 11], [2, 5, 6, 7, 9, 11], [2, 5, 6, 7, 10, 11], [2, 5, 6, 8, 9, 10], [2, 5, 6, 8, 10, 11], [2, 5, 6, 9, 10, 11], [2, 5, 7, 8, 9, 10], [2, 5, 7, 8, 9, 11], [2, 5, 7, 9, 10, 11], [2, 5, 8, 9, 10, 11], [2, 6, 7, 8, 9, 10], [2, 6, 7, 8, 10, 11], [2, 6, 7, 9, 10, 11], [2, 7, 8, 9, 10, 11], [3, 4, 5, 6, 7, 8], [3, 4, 5, 6, 7, 9], [3, 4, 5, 6, 7, 10], [3, 4, 5, 6, 8, 9], [3, 4, 5, 6, 8, 10], [3, 4, 5, 6, 8, 11], [3, 4, 5, 6, 9, 11], [3, 4, 5, 6, 10, 11], [3, 4, 5, 7, 8, 9], [3, 4, 5, 7, 8, 10], [3, 4, 5, 7, 8, 11], [3, 4, 5, 7, 9, 11], [3, 4, 5, 7, 10, 11], [3, 4, 5, 8, 9, 11], [3, 4, 5, 8, 10, 11], [3, 4, 6, 7, 8, 10], [3, 4, 6, 7, 9, 10], [3, 4, 6, 8, 9, 10], [3, 4, 6, 8, 10, 11], [3, 4, 6, 9, 10, 11], [3, 4, 7, 8, 9, 10], [3, 4, 7, 8, 10, 11], [3, 4, 7, 9, 10, 11], [3, 4, 8, 9, 10, 11], [3, 5, 6, 7, 8, 9], [3, 5, 6, 7, 8, 10], [3, 5, 6, 7, 8, 11], [3, 5, 6, 7, 9, 10], [3, 5, 6, 7, 9, 11], [3, 5, 6, 7, 10, 11], [3, 5, 6, 8, 9, 10], [3, 5, 6, 8, 10, 11], [3, 5, 6, 9, 10, 11], [3, 5, 7, 8, 9, 10], [3, 5, 7, 8, 9, 11], [3, 5, 7, 9, 10, 11], [3, 5, 8, 9, 10, 11], [3, 6, 7, 8, 9, 10], [3, 6, 7, 8, 10, 11], [3, 6, 7, 9, 10, 11], [3, 7, 8, 9, 10, 11], [4, 5, 6, 7, 8, 10], [4, 5, 6, 7, 9, 10], [4, 5, 6, 8, 9, 10], [4, 5, 6, 8, 10, 11], [4, 5, 6, 9, 10, 11], [4, 5, 7, 8, 9, 10], [4, 5, 7, 8, 10, 11], [4, 5, 7, 9, 10, 11], [4, 5, 8, 9, 10, 11], [5, 6, 7, 8, 9, 10], [5, 6, 7, 8, 10, 11], [5, 6, 7, 9, 10, 11], [5, 7, 8, 9, 10, 11]],
                       N_ELEMENTS=>12,
                       RANK=>6);
   $m->name="N2 matroid";
   $m->description="An excluded minor for the dyadic matroids";
   return $m;
}

# @category Producing a matroid from scratch
# The complement of the rank-3 whirl in PG(2,3).
# Non binary. Algebraic over all fields.
# @return Matroid
user_function o7_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2], [0, 1, 3], [0, 1, 5], [0, 2, 4], [0, 2, 5], [0, 2, 6], [0, 3, 4], [0, 3, 5], [0, 3, 6], [0, 4, 5], [0, 5, 6], [1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 2, 6], [1, 3, 4], [1, 3, 6], [1, 4, 5], [1, 5, 6], [2, 3, 4], [2, 3, 5], [2, 3, 6], [2, 4, 5], [2, 4, 6], [3, 4, 5], [3, 4, 6], [3, 5, 6], [4, 5, 6]],
                       N_ELEMENTS=>7,
                       RANK=>3);
   $m->name="O7 matroid";
   $m->description="The complement of the rank-3 whirl in PG(2,3)";
   return $m;
}

# @category Producing a matroid from scratch
# Configuration of all points in the affine 3-space AG(3,2) or the binary affine cube. 
# @return Matroid
user_function ag32_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 2, 6], [0, 1, 2, 7], [0, 1, 3, 4], [0, 1, 3, 5], [0, 1, 3, 6], [0, 1, 3, 7], [0, 1, 4, 6], [0, 1, 4, 7], [0, 1, 5, 6], [0, 1, 5, 7], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 3, 6], [0, 2, 3, 7], [0, 2, 4, 5], [0, 2, 4, 6], [0, 2, 5, 7], [0, 2, 6, 7], [0, 3, 4, 5], [0, 3, 4, 7], [0, 3, 5, 6], [0, 3, 6, 7], [0, 4, 5, 6], [0, 4, 5, 7], [0, 4, 6, 7], [0, 5, 6, 7], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3, 7], [1, 2, 4, 5], [1, 2, 4, 7], [1, 2, 5, 6], [1, 2, 6, 7], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 5, 7], [1, 3, 6, 7], [1, 4, 5, 6], [1, 4, 5, 7], [1, 4, 6, 7], [1, 5, 6, 7], [2, 3, 4, 6], [2, 3, 4, 7], [2, 3, 5, 6], [2, 3, 5, 7], [2, 4, 5, 6], [2, 4, 5, 7], [2, 4, 6, 7], [2, 5, 6, 7], [3, 4, 5, 6], [3, 4, 5, 7], [3, 4, 6, 7], [3, 5, 6, 7]],
                       N_ELEMENTS=>8,
                       RANK=>4);
   $m->name="AG(3,2)";
   $m->description="Configuration of all points in the affine 3-space AG(3,2)";
   return $m;
}

# @category Producing a matroid from scratch
# The unique relaxation of [[ag32_matroid]].
# @return Matroid
user_function ag32_prime_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 2, 6], [0, 1, 3, 5], [0, 1, 3, 6], [0, 1, 3, 7], [0, 1, 4, 5], [0, 1, 4, 6], [0, 1, 4, 7], [0, 1, 5, 7], [0, 1, 6, 7], [0, 2, 3, 4], [0, 2, 3, 6], [0, 2, 3, 7], [0, 2, 4, 5], [0, 2, 4, 7], [0, 2, 5, 6], [0, 2, 5, 7], [0, 2, 6, 7], [0, 3, 4, 5], [0, 3, 4, 6], [0, 3, 4, 7], [0, 3, 5, 6], [0, 3, 5, 7], [0, 4, 5, 6], [0, 4, 6, 7], [0, 5, 6, 7], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 7], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 5, 6], [1, 2, 5, 7], [1, 2, 6, 7], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 4, 7], [1, 3, 5, 6], [1, 3, 5, 7], [1, 3, 6, 7], [1, 4, 5, 6], [1, 4, 5, 7], [1, 5, 6, 7], [2, 3, 4, 5], [2, 3, 4, 6], [2, 3, 5, 6], [2, 3, 5, 7], [2, 3, 6, 7], [2, 4, 5, 6], [2, 4, 5, 7], [2, 4, 6, 7], [3, 4, 5, 7], [3, 4, 6, 7], [3, 5, 6, 7], [4, 5, 6, 7]],
                       N_ELEMENTS=>8,
                       RANK=>4);
   $m->name="AG(3,2)'";
   $m->description="The unique relaxation of AG(3,2)";
   return $m;
}

# @category Producing a matroid from scratch
# The real affine cube.
# @return Matroid
user_function r8_matroid() {
    my $m = new Matroid(VECTORS=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1],[-1,1,1,1],[1,-1,1,1],[1,1,-1,1],[1,1,1,-1]]);
   $m->name="R8 matroid";
   $m->description="The real affine cube";
   return $m;
}

# @category Producing a matroid from scratch
# A minimal non-representable matroid.
# Non-algebraic.
# @return Matroid
user_function f8_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 2, 6], [0, 1, 3, 5], [0, 1, 3, 6], [0, 1, 3, 7], [0, 1, 4, 5], [0, 1, 4, 6], [0, 1, 4, 7], [0, 1, 5, 7], [0, 1, 6, 7], [0, 2, 3, 4], [0, 2, 3, 6], [0, 2, 3, 7], [0, 2, 4, 5], [0, 2, 4, 7], [0, 2, 5, 6], [0, 2, 5, 7], [0, 2, 6, 7], [0, 3, 4, 5], [0, 3, 4, 6], [0, 3, 4, 7], [0, 3, 5, 6], [0, 3, 5, 7], [0, 4, 5, 6], [0, 4, 6, 7], [0, 5, 6, 7], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 7], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 5, 6], [1, 2, 5, 7], [1, 2, 6, 7], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 4, 7], [1, 3, 5, 6], [1, 3, 5, 7], [1, 3, 6, 7], [1, 4, 5, 6], [1, 4, 5, 7], [1, 4, 6, 7], [1, 5, 6, 7], [2, 3, 4, 5], [2, 3, 4, 6], [2, 3, 5, 6], [2, 3, 5, 7], [2, 3, 6, 7], [2, 4, 5, 6], [2, 4, 5, 7], [2, 4, 6, 7], [3, 4, 5, 7], [3, 4, 6, 7], [3, 5, 6, 7], [4, 5, 6, 7]],
                       N_ELEMENTS=>8,
                       RANK=>4);
   $m->name="F8 matroid";
   $m->description="A minimal non-representable matroid. Not algebraic.";
   return $m;
}

# @category Producing a matroid from scratch
# A minimal non-representable matroid.
# An excluded minor for fields that are not of characteristic 2 or have 3 elements.  Non-algebraic.
# @return Matroid
user_function q8_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 2, 6], [0, 1, 3, 5], [0, 1, 3, 6], [0, 1, 3, 7], [0, 1, 4, 5], [0, 1, 4, 6], [0, 1, 4, 7], [0, 1, 5, 7], [0, 1, 6, 7], [0, 2, 3, 4], [0, 2, 3, 6], [0, 2, 3, 7], [0, 2, 4, 5], [0, 2, 4, 6], [0, 2, 4, 7], [0, 2, 5, 6], [0, 2, 5, 7], [0, 2, 6, 7], [0, 3, 4, 5], [0, 3, 4, 6], [0, 3, 4, 7], [0, 3, 5, 6], [0, 3, 5, 7], [0, 4, 5, 6], [0, 4, 6, 7], [0, 5, 6, 7], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 7], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 5, 6], [1, 2, 5, 7], [1, 2, 6, 7], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 4, 7], [1, 3, 5, 6], [1, 3, 5, 7], [1, 3, 6, 7], [1, 4, 5, 6], [1, 4, 5, 7], [1, 4, 6, 7], [1, 5, 6, 7], [2, 3, 4, 5], [2, 3, 4, 6], [2, 3, 5, 6], [2, 3, 5, 7], [2, 3, 6, 7], [2, 4, 5, 6], [2, 4, 5, 7], [2, 4, 6, 7], [3, 4, 5, 7], [3, 4, 6, 7], [3, 5, 6, 7], [4, 5, 6, 7]],
                       N_ELEMENTS=>8,
                       RANK=>4);
   $m->name="Q8 matroid";
   $m->description="A minimal non-representable matroid. An excluded minor for fields that are not of characteristic 2 or have 3 elements.  Non-algebraic.";
   return $m;
}

# @category Producing a matroid from scratch
# Representable if and only if the field has characteristic 3.
# An excluded minor for fields that are not of characteristic 2 or 3.
# @return Matroid
user_function t8_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 2, 6], [0, 1, 3, 4], [0, 1, 3, 5], [0, 1, 3, 7], [0, 1, 4, 6], [0, 1, 4, 7], [0, 1, 5, 6], [0, 1, 5, 7], [0, 1, 6, 7], [0, 2, 3, 4], [0, 2, 3, 6], [0, 2, 3, 7], [0, 2, 4, 5], [0, 2, 4, 7], [0, 2, 5, 6], [0, 2, 5, 7], [0, 2, 6, 7], [0, 3, 4, 5], [0, 3, 4, 6], [0, 3, 5, 6], [0, 3, 5, 7], [0, 3, 6, 7], [0, 4, 5, 6], [0, 4, 5, 7], [0, 4, 6, 7], [0, 5, 6, 7], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3, 7], [1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 5, 7], [1, 2, 6, 7], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 4, 7], [1, 3, 5, 6], [1, 3, 6, 7], [1, 4, 5, 6], [1, 4, 5, 7], [1, 4, 6, 7], [1, 5, 6, 7], [2, 3, 4, 5], [2, 3, 4, 6], [2, 3, 4, 7], [2, 3, 5, 6], [2, 3, 5, 7], [2, 4, 5, 6], [2, 4, 5, 7], [2, 4, 6, 7], [2, 5, 6, 7], [3, 4, 5, 6], [3, 4, 5, 7], [3, 4, 6, 7], [3, 5, 6, 7]],
                       N_ELEMENTS=>8,
                       RANK=>4);
   $m->name="T8 matroid";
   $m->description="Representable if and only if the field has characteristic 3. An excluded minor for fields that are not of characteristic 2 or 3.";
   return $m;
}

# @category Producing a matroid from scratch
# The rank-4 wheel.
# @return Matroid
user_function wheel4_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 3], [0, 1, 2, 6], [0, 1, 2, 7], [0, 1, 3, 5], [0, 1, 3, 6], [0, 1, 5, 6], [0, 1, 5, 7], [0, 1, 6, 7], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 6], [0, 2, 4, 7], [0, 2, 5, 6], [0, 2, 5, 7], [0, 3, 4, 5], [0, 3, 4, 6], [0, 3, 5, 6], [0, 4, 5, 6], [0, 4, 5, 7], [0, 4, 6, 7], [0, 5, 6, 7], [1, 2, 3, 4], [1, 2, 3, 7], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 6, 7], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 5, 7], [1, 3, 6, 7], [1, 4, 5, 6], [1, 4, 5, 7], [1, 4, 6, 7], [1, 5, 6, 7], [2, 3, 4, 5], [2, 3, 4, 7], [2, 3, 5, 7], [2, 4, 5, 6], [2, 4, 5, 7], [2, 4, 6, 7], [2, 5, 6, 7], [3, 4, 5, 6], [3, 4, 5, 7], [3, 4, 6, 7], [3, 5, 6, 7]],
                       N_ELEMENTS=>8,
                       RANK=>4);
   $m->name="Wheel(4) matroid";
   $m->description="The rank-4 wheel";
   return $m;
}

# @category Producing a matroid from scratch
# Configuration of the 9 points in the affine plane AG(2,3).
# @return Matroid
user_function ag23_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 1, 5], [0, 1, 6], [0, 1, 7], [0, 2, 3], [0, 2, 5], [0, 2, 6], [0, 2, 7], [0, 2, 8], [0, 3, 4], [0, 3, 5], [0, 3, 7], [0, 3, 8], [0, 4, 5], [0, 4, 6], [0, 4, 7], [0, 4, 8], [0, 5, 6], [0, 5, 8], [0, 6, 7], [0, 6, 8], [0, 7, 8], [1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 2, 6], [1, 2, 8], [1, 3, 4], [1, 3, 6], [1, 3, 7], [1, 3, 8], [1, 4, 5], [1, 4, 7], [1, 4, 8], [1, 5, 6], [1, 5, 7], [1, 5, 8], [1, 6, 7], [1, 6, 8], [1, 7, 8], [2, 3, 4], [2, 3, 5], [2, 3, 6], [2, 3, 7], [2, 4, 5], [2, 4, 6], [2, 4, 7], [2, 4, 8], [2, 5, 7], [2, 5, 8], [2, 6, 7], [2, 6, 8], [2, 7, 8], [3, 4, 5], [3, 4, 6], [3, 4, 8], [3, 5, 6], [3, 5, 7], [3, 5, 8], [3, 6, 7], [3, 6, 8], [3, 7, 8], [4, 5, 6], [4, 5, 7], [4, 6, 7], [4, 6, 8], [4, 7, 8], [5, 6, 7], [5, 6, 8], [5, 7, 8]],
                       N_ELEMENTS=>9,
                       RANK=>3);
   $m->name="AG(2,3)";
   $m->description="Configuration of the 9 points in the affine plane AG(2,3)";
   return $m;
}

# @category Producing a matroid from scratch
# The rank-3-ternary Dowling Geometry.
# Representable if and only if the field has not characteristic 2.
# @return Matroid
user_function q3_gf3_star_matroid() {
    my $m = new Matroid(VECTORS=> transpose(new Matrix([[1,-1,1,1,0,0,1,1,0],[0,0,2,0,0,1,1,1,1],[1,1,1,0,1,1,0,1,0]])));
   $m->name="Q3(GF(3)*)";
   $m->description="The rank-3-ternary Dowling Geometry";
   return $m;
}

# @category Producing a matroid from scratch
# Not representable over any field.
# Taken from http://doc.sagemath.org/html/en/reference/matroids/sage/matroids/catalog.html
# @return Matroid
user_function r9a_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 2, 6], [0, 1, 2, 8], [0, 1, 3, 5], [0, 1, 3, 6], [0, 1, 3, 7], [0, 1, 3, 8], [0, 1, 4, 5], [0, 1, 4, 6], [0, 1, 4, 7], [0, 1, 4, 8], [0, 1, 5, 6], [0, 1, 5, 7], [0, 1, 6, 7], [0, 1, 6, 8], [0, 1, 7, 8], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 3, 6], [0, 2, 3, 7], [0, 2, 4, 5], [0, 2, 4, 7], [0, 2, 4, 8], [0, 2, 5, 6], [0, 2, 5, 7], [0, 2, 5, 8], [0, 2, 6, 7], [0, 2, 6, 8], [0, 2, 7, 8], [0, 3, 4, 5], [0, 3, 4, 6], [0, 3, 4, 7], [0, 3, 4, 8], [0, 3, 5, 6], [0, 3, 5, 7], [0, 3, 5, 8], [0, 3, 6, 8], [0, 3, 7, 8], [0, 4, 5, 6], [0, 4, 5, 8], [0, 4, 6, 7], [0, 4, 6, 8], [0, 4, 7, 8], [0, 5, 6, 7], [0, 5, 6, 8], [0, 5, 7, 8], [0, 6, 7, 8], [1, 2, 3, 4], [1, 2, 3, 6], [1, 2, 3, 7], [1, 2, 3, 8], [1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 4, 8], [1, 2, 5, 6], [1, 2, 5, 7], [1, 2, 5, 8], [1, 2, 6, 7], [1, 2, 6, 8], [1, 2, 7, 8], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 4, 7], [1, 3, 4, 8], [1, 3, 5, 6], [1, 3, 5, 7], [1, 3, 5, 8], [1, 3, 6, 7], [1, 3, 6, 8], [1, 4, 5, 6], [1, 4, 5, 7], [1, 4, 5, 8], [1, 4, 6, 7], [1, 4, 7, 8], [1, 5, 6, 7], [1, 5, 6, 8], [1, 5, 7, 8], [1, 6, 7, 8], [2, 3, 4, 5], [2, 3, 4, 6], [2, 3, 4, 7], [2, 3, 4, 8], [2, 3, 5, 6], [2, 3, 5, 7], [2, 3, 5, 8], [2, 3, 6, 7], [2, 3, 6, 8], [2, 3, 7, 8], [2, 4, 5, 6], [2, 4, 5, 7], [2, 4, 5, 8], [2, 4, 6, 7], [2, 4, 6, 8], [2, 5, 6, 7], [2, 5, 6, 8], [2, 5, 7, 8], [2, 6, 7, 8], [3, 4, 5, 6], [3, 4, 5, 7], [3, 4, 6, 7], [3, 4, 6, 8], [3, 4, 7, 8], [3, 5, 6, 7], [3, 5, 6, 8], [3, 5, 7, 8], [3, 6, 7, 8], [4, 5, 6, 7], [4, 5, 6, 8], [4, 5, 7, 8], [4, 6, 7, 8]],
                       N_ELEMENTS=>9,
                       RANK=>4);
   $m->name="R9_a";
   $m->description="Not representable over any field. Taken from http://doc.sagemath.org/html/en/reference/matroids/sage/matroids/catalog.html";
   return $m;
}

# @category Producing a matroid from scratch
# Not representable over any field.
# Taken from http://doc.sagemath.org/html/en/reference/matroids/sage/matroids/catalog.html
# @return Matroid
user_function r9b_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 2, 6], [0, 1, 2, 8], [0, 1, 3, 5], [0, 1, 3, 6], [0, 1, 3, 7], [0, 1, 3, 8], [0, 1, 4, 5], [0, 1, 4, 6], [0, 1, 4, 7], [0, 1, 4, 8], [0, 1, 5, 6], [0, 1, 5, 7], [0, 1, 5, 8], [0, 1, 6, 7], [0, 1, 7, 8], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 3, 6], [0, 2, 3, 7], [0, 2, 3, 8], [0, 2, 4, 5], [0, 2, 4, 7], [0, 2, 4, 8], [0, 2, 5, 6], [0, 2, 5, 7], [0, 2, 5, 8], [0, 2, 6, 7], [0, 2, 6, 8], [0, 2, 7, 8], [0, 3, 4, 5], [0, 3, 4, 6], [0, 3, 4, 7], [0, 3, 4, 8], [0, 3, 5, 6], [0, 3, 5, 7], [0, 3, 6, 7], [0, 3, 6, 8], [0, 3, 7, 8], [0, 4, 5, 6], [0, 4, 5, 7], [0, 4, 5, 8], [0, 4, 6, 7], [0, 4, 6, 8], [0, 5, 6, 7], [0, 5, 6, 8], [0, 5, 7, 8], [0, 6, 7, 8], [1, 2, 3, 4], [1, 2, 3, 6], [1, 2, 3, 7], [1, 2, 3, 8], [1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 5, 6], [1, 2, 5, 7], [1, 2, 5, 8], [1, 2, 6, 7], [1, 2, 6, 8], [1, 2, 7, 8], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 4, 7], [1, 3, 4, 8], [1, 3, 5, 6], [1, 3, 5, 7], [1, 3, 5, 8], [1, 3, 6, 7], [1, 3, 6, 8], [1, 4, 5, 6], [1, 4, 5, 8], [1, 4, 6, 7], [1, 4, 6, 8], [1, 4, 7, 8], [1, 5, 6, 7], [1, 5, 6, 8], [1, 5, 7, 8], [1, 6, 7, 8], [2, 3, 4, 5], [2, 3, 4, 6], [2, 3, 4, 7], [2, 3, 4, 8], [2, 3, 5, 6], [2, 3, 5, 7], [2, 3, 5, 8], [2, 3, 6, 8], [2, 3, 7, 8], [2, 4, 5, 6], [2, 4, 5, 7], [2, 4, 5, 8], [2, 4, 6, 7], [2, 4, 6, 8], [2, 4, 7, 8], [2, 5, 6, 7], [2, 5, 6, 8], [2, 5, 7, 8], [2, 6, 7, 8], [3, 4, 5, 6], [3, 4, 5, 7], [3, 4, 5, 8], [3, 4, 6, 7], [3, 4, 7, 8], [3, 5, 6, 7], [3, 5, 6, 8], [3, 5, 7, 8], [3, 6, 7, 8], [4, 5, 6, 7], [4, 5, 6, 8], [4, 5, 7, 8], [4, 6, 7, 8]],
                       N_ELEMENTS=>9,
                       RANK=>4);
   $m->name="R9_b";
   $m->description="Not representable over any field. Taken from http://doc.sagemath.org/html/en/reference/matroids/sage/matroids/catalog.html";
   return $m;
}

# @category Producing a matroid from scratch
# Configuration of the 13 points in the projective plane PG(2,3).
# @return Matroid
user_function pg23_matroid() {
    my $m = new Matroid(BASES=>[[0, 1, 3], [0, 1, 4], [0, 1, 5], [0, 1, 6], [0, 1, 7], [0, 1, 8], [0, 1, 9], [0, 1, 10], [0, 1, 11], [0, 2, 3], [0, 2, 4], [0, 2, 5], [0, 2, 6], [0, 2, 7], [0, 2, 8], [0, 2, 9], [0, 2, 10], [0, 2, 11], [0, 3, 4], [0, 3, 5], [0, 3, 7], [0, 3, 8], [0, 3, 10], [0, 3, 11], [0, 3, 12], [0, 4, 5], [0, 4, 6], [0, 4, 7], [0, 4, 9], [0, 4, 11], [0, 4, 12], [0, 5, 6], [0, 5, 8], [0, 5, 9], [0, 5, 10], [0, 5, 12], [0, 6, 7], [0, 6, 8], [0, 6, 10], [0, 6, 11], [0, 6, 12], [0, 7, 8], [0, 7, 9], [0, 7, 10], [0, 7, 12], [0, 8, 9], [0, 8, 11], [0, 8, 12], [0, 9, 10], [0, 9, 11], [0, 9, 12], [0, 10, 11], [0, 10, 12], [0, 11, 12], [1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 2, 6], [1, 2, 7], [1, 2, 8], [1, 2, 9], [1, 2, 10], [1, 2, 11], [1, 3, 4], [1, 3, 5], [1, 3, 6], [1, 3, 7], [1, 3, 9], [1, 3, 10], [1, 3, 12], [1, 4, 5], [1, 4, 6], [1, 4, 8], [1, 4, 10], [1, 4, 11], [1, 4, 12], [1, 5, 7], [1, 5, 8], [1, 5, 9], [1, 5, 11], [1, 5, 12], [1, 6, 7], [1, 6, 8], [1, 6, 9], [1, 6, 11], [1, 6, 12], [1, 7, 8], [1, 7, 10], [1, 7, 11], [1, 7, 12], [1, 8, 9], [1, 8, 10], [1, 8, 12], [1, 9, 10], [1, 9, 11], [1, 9, 12], [1, 10, 11], [1, 10, 12], [1, 11, 12], [2, 3, 4], [2, 3, 5], [2, 3, 6], [2, 3, 8], [2, 3, 9], [2, 3, 11], [2, 3, 12], [2, 4, 5], [2, 4, 7], [2, 4, 8], [2, 4, 9], [2, 4, 10], [2, 4, 12], [2, 5, 6], [2, 5, 7], [2, 5, 10], [2, 5, 11], [2, 5, 12], [2, 6, 7], [2, 6, 8], [2, 6, 9], [2, 6, 10], [2, 6, 12], [2, 7, 8], [2, 7, 9], [2, 7, 11], [2, 7, 12], [2, 8, 10], [2, 8, 11], [2, 8, 12], [2, 9, 10], [2, 9, 11], [2, 9, 12], [2, 10, 11], [2, 10, 12], [2, 11, 12], [3, 4, 6], [3, 4, 7], [3, 4, 8], [3, 4, 9], [3, 4, 10], [3, 4, 11], [3, 5, 6], [3, 5, 7], [3, 5, 8], [3, 5, 9], [3, 5, 10], [3, 5, 11], [3, 6, 7], [3, 6, 8], [3, 6, 10], [3, 6, 11], [3, 6, 12], [3, 7, 8], [3, 7, 9], [3, 7, 11], [3, 7, 12], [3, 8, 9], [3, 8, 10], [3, 8, 12], [3, 9, 10], [3, 9, 11], [3, 9, 12], [3, 10, 11], [3, 10, 12], [3, 11, 12], [4, 5, 6], [4, 5, 7], [4, 5, 8], [4, 5, 9], [4, 5, 10], [4, 5, 11], [4, 6, 7], [4, 6, 8], [4, 6, 9], [4, 6, 10], [4, 6, 12], [4, 7, 8], [4, 7, 10], [4, 7, 11], [4, 7, 12], [4, 8, 9], [4, 8, 11], [4, 8, 12], [4, 9, 10], [4, 9, 11], [4, 9, 12], [4, 10, 11], [4, 10, 12], [4, 11, 12], [5, 6, 7], [5, 6, 8], [5, 6, 9], [5, 6, 11], [5, 6, 12], [5, 7, 8], [5, 7, 9], [5, 7, 10], [5, 7, 12], [5, 8, 10], [5, 8, 11], [5, 8, 12], [5, 9, 10], [5, 9, 11], [5, 9, 12], [5, 10, 11], [5, 10, 12], [5, 11, 12], [6, 7, 9], [6, 7, 10], [6, 7, 11], [6, 8, 9], [6, 8, 10], [6, 8, 11], [6, 9, 10], [6, 9, 11], [6, 9, 12], [6, 10, 11], [6, 10, 12], [6, 11, 12], [7, 8, 9], [7, 8, 10], [7, 8, 11], [7, 9, 10], [7, 9, 11], [7, 9, 12], [7, 10, 11], [7, 10, 12], [7, 11, 12], [8, 9, 10], [8, 9, 11], [8, 9, 12], [8, 10, 11], [8, 10, 12], [8, 11, 12]],
                       N_ELEMENTS=>13,
                       RANK=>3);
   $m->name="PG(2,3)";
   $m->description="Configuration of the 13 points in the projective plane PG(2,3)";
   return $m;
}


# @category Producing a matroid from scratch
# Representable if and only if the field has not characteristic 2.
# The labeling of the elements is similar to those of the Fano matroid.
# @return Matroid
user_function non_fano_matroid() {
    my $m = new Matroid(VECTORS=>[[1,1,1],[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0]]);
   $m->name="Non-Fano matroid";
   $m->description="The embedding into the reals of the seven points that define the Fano matroid";
   return $m;
}

# @category Producing a matroid from scratch
# Creates the Fano plane matroid of rank 3 with 7 elements.
# Representable over a field of characteristic two.
# The labeling of the elements corresponds to the binary encoding of 1,2,...,7 mod 7.
# @return Matroid
user_function fano_matroid() {
   my $m = new Matroid(BINARY_VECTORS=>[[1,1,1],[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0]],
                       BASES=>[[0,1,2],[0,1,3],[0,1,4],[0,1,5],[0,2,3],[0,2,4],[0,2,6],[0,3,5],[0,3,6],[0,4,5],[0,4,6],[0,5,6],[1,2,4],[1,2,5],[1,2,6],[1,3,4],[1,3,5],[1,3,6],[1,4,6],[1,5,6],[2,3,4],[2,3,5],[2,3,6],[2,4,5],[2,5,6],[3,4,5],[3,4,6],[4,5,6]],
                       N_ELEMENTS=>7,
                       RANK=>3);
   $m->name="Fano matroid";
   $m->description="The projective plane PG(2,2)";
   return $m;
}


# @category Producing a matroid from scratch
# This function can be used to ask for various special matroids, most of which occur in Oxley's book
# [Oxley: Matroid theory (2nd ed.)]. There is a separate function for each of these matroids.
# @param String s The name of the matroid
# @value s 'ag23' Configuration of the 9 points in the affine plane AG(2,3).
# @value s 'ag32' Configuration of all points in the affine 3-space AG(3,2) or the binary affine cube. 
# @value s 'ag32_prime' The unique relaxation of [[ag32_matroid]].
# @value s 'fano' The Fano matroid
# @value s 'f8' A minimal non-representable matroid. Also non-algebraic.
# @value s 'j' An excluded minor for some properties (see [Oxley:matroid theory (2nd ed.) page 650]). Not binary. Algebraic over all fields.
# @value s 'l8' The 4-point planes are the six faces of the cube an the two twisted plannes. Identically self-dual. Representable over all field with more then 4 elements and algebraic over all fields.
# @value s 'n1' An excluded minor for the dyadic matroids (see [Oxley:matroid theory (2nd ed.) page 558]).
# @value s 'n2' An excluded minor for the dyadic matroids (see [Oxley:matroid theory (2nd ed.) page 558]).
# @value s 'o7' The complement of the rank-3 whirl in PG(2,3). Non binary. Algebraic over all fields.
# @value s 'p7' The only other ternary 3-spike apart from the non-Fano matroid. Non binary. Algebraic over all fields.
# @value s 'p8' The repesentation over the reals is obtained from a 3-cube where one face is rotated by 45°. Non-representable if and only if the characeristic of the field is 2. Algebraic over all fields.
# @value s 'non_p8' Obtained  from [[p8_matroid]] by relaxing its only pair of disjoint circuit-hyperplanes. 
# @value s 'pappus' The Pappus matroid
# @value s 'non_pappus' The non-Pappus matroid
# @value s 'pg23' Configuration of the 13 points in the projective plane PG(2,3).
# @value s 'q3_gf3_star' The rank-3-ternary Dowling Geometry. Representable if and only if the field has not characteristic 2.
# @value s 'q8' A minimal non-representable matroid. An excluded minor for fields that are not of characteristic 2 or have 3 elements.  Non-algebraic.
# @value s 'r8' The real affine cube.
# @value s 'r9a' Not representable over any field. Taken from http://doc.sagemath.org/html/en/reference/matroids/sage/matroids/catalog.html
# @value s 'r9b' Not representable over any field. Taken from http://doc.sagemath.org/html/en/reference/matroids/sage/matroids/catalog.html
# @value s 'r10' A regular matroid that's not graphical nor cographical. Algebraic over all fields.
# @value s 't8' Representable if and only if the field has characteristic 3. An excluded minor for fields that are not of characteristic 2 or 3.
# @value s 'vamos' The Vamos matroid
# @value s 'non_vamos' The non-Vamos matroid
# @value s 'wheel4' The 4-wheel
# @value s 'non_fano' The non-Fano matroid
user_function special_matroid {
   my $s = shift;
   return eval($s."_matroid()");
}



# Local Variables:
# mode: perl
# cperl-indent-level: 3
# indent-tabs-mode:nil
# End: