File: beneath_beyond_impl.h

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (1109 lines) | stat: -rw-r--r-- 36,449 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once

#include "polymake/client.h"
#include "polymake/linalg.h"
#include "polymake/Vector.h"
#include "polymake/Matrix.h"
#include "polymake/ListMatrix.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/Graph.h"
#include "polymake/Bitset.h"
#include "polymake/Set.h"
#include "polymake/Array.h"
#include "polymake/list"
#include <deque>

namespace polymake { namespace polytope {

/** Encapsulating the beneath-beyond algorithm.
    One instance is used to solve exactly one convex-hull problem.

    @tmplparam E numerical type of the coordinates
*/
template <typename E>
class beneath_beyond_algo {
public:
   beneath_beyond_algo()
      : expect_redundant(false)
      , make_triangulation(true)
      , is_cone(false)
      , compute_vertices(false)
   {
      dual_graph.attach(facets);
      dual_graph.attach(ridges);
   }

   /// flag==true: input points may contain redundancies (INPUT_RAYS, INEQUALITIES)
   /// flag==false: inpit points are free from redundancies (RAYS, FACETS)
   beneath_beyond_algo& expecting_redundant(bool flag)
   {
      expect_redundant = flag;
      return *this;
   }

   /// flag==true: input points are cone rays/facets
   /// flag==false: input points are polytope vertices/facets
   beneath_beyond_algo& for_cone(bool flag)
   {
      is_cone = flag;
      return *this;
   }

   /// flag==true: compute the triangulation
   /// flag==false: don't compute the triangulation
   beneath_beyond_algo& making_triangulation(bool flag)
   {
      make_triangulation = flag;
      return *this;
   }

   /// flag==true: input vectors are hyperplanes, result is vertices
   /// flag==false: input vectors are rays, result is facets
   beneath_beyond_algo& computing_vertices(bool flag)
   {
      compute_vertices = flag;
      return *this;
   }

   void compute(const Matrix<E>& rays, const Matrix<E>& lins)
   {
#if POLYMAKE_DEBUG
      enable_debug_output();
#endif
      compute(rays, lins, entire(sequence(0, rays.rows())));
   }

   // TODO: bundle all results in a structure, move all numbers into it
   template <typename Iterator>
   void compute(const Matrix<E>& rays, const Matrix<E>& lins, Iterator perm);

   Matrix<E> getFacets() const;
   IncidenceMatrix<> getVertexFacetIncidence() const;
   Matrix<E> getAffineHull() const;
   Matrix<E> getVertices() const;

   Bitset getNonRedundantPoints() const
   {
      Bitset result(sequence(0, source_points->rows()));
      result -= interior_points;
      return result;
   }

   Set<Int> getNonRedundantLinealities() const
   {
      const Int n_points = source_points->rows();
      Set<Int> result = points_in_lineality_basis;
      for (const Int p : source_lineality_basis)
         result += p + n_points;
      return result;
   }

   Matrix<E> getLinealities() const
   {
      return linealities_so_far;
   }

   Graph<> getDualGraph() const
   {
      return dual_graph;
   }

   Array<Set<Int>> getTriangulation() const
   {
      return Array<Set<Int>>(triang_size, triangulation.rbegin());
   }


   bool getGenericPosition() const
   {
      return generic_position;
   }

protected:
   // connects a facet with a triangulation simplex
   struct incident_simplex {
      const Set<Int>* simplex;  // an element of triangulation
      Int opposite_vertex;      // the only vertex NOT belonging to the facet

      incident_simplex(const Set<Int>& simplex_arg, Int vertex_arg)
         : simplex(&simplex_arg), opposite_vertex(vertex_arg) { }
   };

   // description of a facet; stored as a node attribute of the dual graph
   struct facet_info {
      Vector<E> normal;         // normal vector, directed inside the polyhedron
      E sqr_normal;             // sqr(normal)
      Int orientation;          // sign(normal * current-point-to-be-added) during one algo step
                                // =0 : facet is incident, <0 : facet is violated (and will die)
      Set<Int> vertices;        // ... incident to the facet

      // simplices from the polytope triangulation contributing to the triangulation of this facet
      using simplex_list = std::list<incident_simplex>;
      simplex_list simplices;

      // compute the normal vector etc. assuming the full-dimensional case (Affine Hull is empty)
      void coord_full_dim(const beneath_beyond_algo&);

      // compute the normal vector etc. in the low-dimensional case
      void coord_low_dim(const beneath_beyond_algo&);

      // check the intersection of triangulation simplices from [s, s_end) with the facet,
      // include those with a (d-1)-face ompletely belonging to the facet in its simplex_list
      template <typename Iterator>
      void add_incident_simplices(Iterator s, Iterator s_end);

      // enables efficient memory management in the dual graph
      friend void relocate(facet_info* from, facet_info* to)
      {
         relocate(&from->normal, &to->normal);
         relocate(&from->sqr_normal, &to->sqr_normal);
         to->orientation = from->orientation;
         relocate(&from->vertices, &to->vertices);
         pm::relocate(&from->simplices, &to->simplices);
      }
#if POLYMAKE_DEBUG
      template <typename Output> friend
      Output& operator<< (GenericOutput<Output>& os, const facet_info& me)
      {
         return os.top() << me.normal << ' ' << me.vertices;
      }
#endif
   };

   const Matrix<E>* source_points;
   Matrix<E> transformed_points;
   const Matrix<E>* points;
   const Matrix<E>* source_linealities;
   Matrix<E> linealities_so_far;
   const Matrix<E>* linealities;
   Matrix<E> lineality_transform;
   bool expect_redundant;
   bool make_triangulation;
   bool is_cone;
   bool compute_vertices;

   enum class compute_state { zero, one, low_dim, full_dim };
   compute_state state;

   Graph<> dual_graph;
   using facets_t = NodeMap<Undirected,facet_info>;
   using ridges_t = EdgeMap<Undirected, Set<Int>>;
   facets_t facets;
   ridges_t ridges;

   ListMatrix<SparseVector<E>> AH;  // affine hull
   ListMatrix<SparseVector<E>> facet_nullspace;  // its affine nullspace - is not computed as long as
                                                 //  the consumed input vertices comprise a simplex
   Bitset interior_points;  // indices of points which are not vertices

   Set<Int> source_lineality_basis, points_in_lineality_basis;

   using Triangulation = std::list<Set<Int>>;
   Triangulation triangulation;

   // These are working variables valid within one algo step.
   // We define them as instance variables nevertheless to avoid the repeating allocation and deallocation.
   Bitset vertices_this_step,           // points proved to be non-redundant
          interior_points_this_step,    // points that could be redundant
          visited_facets;               // facets seen

   std::deque<Int> facet_queue;   // BFS queue for update_facets()

   // accumulates the non-redundant points; is filled until the polytope turns out to be full-dimensional
   Set<Int> vertices_so_far;
   Int triang_size;     // = triangulation.size();

   Int valid_facet;     // a facet where to start the visibility border search

   bool generic_position;
   bool facet_normals_valid;

   void process_point(Int p);

   void add_second_point(Int p);

   // add the next point, given by the row index.
   // Recalculates the affine hull. If its dimension did not decrease, delegates the rest work to add_point_full_dim()
   void add_point_low_dim(Int p);

   // The first phase of the step: looking for a facet violated by point p. If found, calls update_facets()
   void add_point_full_dim(Int p);

   // helper function for add_point_full_dim
   Int descend_to_violated_facet(Int f, Int p);

   // helper functions
   void facet_normals_low_dim();
   bool reduce_nullspace(ListMatrix<SparseVector<E>>& M, Int p) const;

   // The main phase of the step: detect all facets to be deleted, create new facets and simplices
   // @param f the index of the first facet violated by or incident with point p
   void update_facets(Int f, Int p);

   void process_new_lineality(Int p, const std::list<Int>& incident_facets);

   void transform_points();

   template <typename ISet>
   void add_linealities(const ISet& point_set);

   class stop_calculation {};

   void complain_redundant(Int p);

#if POLYMAKE_DEBUG
   void dump() const;
   void dump_p(Int p) const;
   void check_f(Int f, Int last_p) const;
   void check_p(Int p) const;
   void check_fp(Int f_index, const facet_info& f, Int p, std::ostringstream& errors) const;
   enum debug_kind { do_nothing, do_check, do_dump, do_full_dump };
   debug_kind debug;

   void enable_debug_output()
   {
      switch (get_debug_level()) {
      case 0:
         debug = do_nothing;
         break;
      case 1:
         debug = do_check;
         break;
      case 2:
         debug = do_dump;
         break;
      default:
         debug = do_full_dump;
         break;
      }
   }
#endif
};

template <typename E>
Matrix<E> beneath_beyond_algo<E>::getFacets() const
{
   const auto extract_normals = [this](){
      return Matrix<E>(dual_graph.nodes(), points->cols(),
                       entire(attach_member_accessor(facets, ptr2type<facet_info, Vector<E>, &facet_info::normal>())));
   };
   if (dual_graph.nodes() != 0 && linealities->rows() != 0) {
      return (extract_normals() | zero_matrix<E>(0, linealities->rows())) * T(lineality_transform);
   } else if (dual_graph.nodes() != 0) {
      return extract_normals();
   } else {
      // no facets but fix ambient dimension
      return Matrix<E>(0,source_points->cols());
   }
}

template <typename E>
Matrix<E> beneath_beyond_algo<E>::getAffineHull() const
{
   if (AH.rows() != 0 && linealities->rows() != 0) {
      return (AH | zero_matrix<E>(0, linealities->rows())) * T(lineality_transform);
   } else if (AH.rows() != 0) {
      return AH;
   } else {
      // no affine hull but fix ambient dimension
      return Matrix<E>(0,source_points->cols());
   }
}

template <typename E>
Matrix<E> beneath_beyond_algo<E>::getVertices() const
{
   Matrix<E> V = source_points->minor(~interior_points, All);
   if (linealities->rows() != 0 && !compute_vertices) {
      // canonicalize vertices: project them on the orthogonal complement of linealities
      Matrix<E> Lnorm = *linealities;
      for (auto l = entire(rows(Lnorm)); !l.at_end(); ++l)
         *l /= sqr(*l);
      V -= V * (T(Lnorm) * (*linealities));
   }
   return V;
}

template <typename E>
IncidenceMatrix<> beneath_beyond_algo<E>::getVertexFacetIncidence() const
{
   IncidenceMatrix<> VIF(dual_graph.nodes(), points->rows(),
                         attach_member_accessor(facets, ptr2type<facet_info, Set<Int>, &facet_info::vertices>()).begin());
   if (!expect_redundant) return VIF;
   return VIF.minor(All, ~interior_points);
}

template <typename E>
void beneath_beyond_algo<E>::transform_points()
{
   const auto lin_compl = null_space(*linealities);
   if (expect_redundant && lin_compl.rows() == 0)
      // solution space is empty
      throw stop_calculation();
   lineality_transform = inv(lin_compl / *linealities);
   transformed_points = (*source_points * lineality_transform).minor(All, sequence(0, source_points->cols() - linealities->rows()));
   points = &transformed_points;
}

template <typename E>
bool beneath_beyond_algo<E>::reduce_nullspace(ListMatrix<SparseVector<E>>& M, Int p) const
{
   return basis_of_rowspan_intersect_orthogonal_complement(M, points->row(p), black_hole<Int>(), black_hole<Int>());
}

template <typename E>
template <typename Iterator>
void beneath_beyond_algo<E>::compute(const Matrix<E>& rays, const Matrix<E>& lins, Iterator perm)
{
   source_points = &rays;
   source_linealities = &lins;

   linealities_so_far.resize(0,rays.cols());

   try {
      if (lins.rows() != 0) {
         if (expect_redundant) {
            source_lineality_basis = basis_rows(lins);
            linealities_so_far = lins.minor(source_lineality_basis, All);
            linealities = &linealities_so_far;
         } else {
            linealities = source_linealities;
         }
         transform_points();
      } else {
         points = source_points;
         linealities = expect_redundant ? &linealities_so_far : source_linealities;
      }

      generic_position = !expect_redundant;
      triang_size = 0;
      AH = unit_matrix<E>(points->cols());
      if (expect_redundant) {
         interior_points.resize(points->rows());
         vertices_this_step.resize(points->rows());
         interior_points_this_step.resize(points->rows());
      }

      for (state = compute_state::zero; !perm.at_end(); ++perm)
         process_point(*perm);
      if (state == compute_state::low_dim && !facet_normals_valid)
         facet_normals_low_dim();
   }
   catch (const stop_calculation&) {
#if POLYMAKE_DEBUG
      if (debug >= do_dump) cout << "stop: degenerated to full linear space" << endl;
#endif
      state = compute_state::zero;
      dual_graph.clear();
      vertices_so_far.clear();
      points = source_points;
      interior_points = sequence(0, source_points->rows());
      if (make_triangulation) {
         triangulation.clear();
         triang_size = 0;
      }
   }

   switch (state) {
   case compute_state::zero:
      if (!is_cone) {
         // empty polyhedron
         AH.resize(0, source_points->cols());
         linealities_so_far.resize(0, source_points->cols());
      }
      break;
   case compute_state::one:
      // There is one empty facet in this case and the point is also a facet normal
      facets[dual_graph.add_node()].normal = points->row(vertices_so_far.front());
      if (make_triangulation) {
         triang_size=1;
         triangulation.push_back(vertices_so_far);
      }
      break;
   case compute_state::low_dim:
   case compute_state::full_dim:
      dual_graph.squeeze();
      break;
   }

#if POLYMAKE_DEBUG
   if (debug >= do_dump) {
      cout << "final ";
      dump();
   }
#endif
}

template <typename E>
void beneath_beyond_algo<E>::process_point(const Int p)
{
   if (expect_redundant && is_zero(points->row(p))) {
      interior_points += p;
      return;
   }

   switch (state) {
   case compute_state::zero: {
      // the first point
      reduce_nullspace(AH, p);
      vertices_so_far = scalar2set(p);
      state = compute_state::one;
      break;
   }
   case compute_state::one: {
      add_second_point(p);
      break;
   }
   case compute_state::low_dim:
      add_point_low_dim(p);
#if POLYMAKE_DEBUG
      if (debug == do_check) check_p(p);
#endif
      break;
   case compute_state::full_dim:
      add_point_full_dim(p);
#if POLYMAKE_DEBUG
      if (debug == do_check) check_p(p);
#endif
      break;
   }
}

template <typename E>
void beneath_beyond_algo<E>::add_second_point(Int p)
{
   const Int p0 = vertices_so_far.front();
   if (reduce_nullspace(AH, p)) {
      // two different points found: initialize the polytope
      const Int f0 = dual_graph.add_node();
      facets[f0].vertices = vertices_so_far;
      const Int f1 = dual_graph.add_node();
      facets[f1].vertices = scalar2set(p);
      dual_graph.edge(f0, f1);
      vertices_so_far += p;
      if (make_triangulation) {
         triangulation.push_back(vertices_so_far);
         triang_size = 1;
         facets[f0].simplices.push_back(incident_simplex(triangulation.front(), p));
         facets[f1].simplices.push_back(incident_simplex(triangulation.front(), p0));
      }
      valid_facet = 0;
#if POLYMAKE_DEBUG
      if (debug >= do_dump)
         cout << "starting points: " << vertices_so_far << "\n" << points->minor(vertices_so_far, All) << "\nAH:\n" << AH << endl;
#endif
      if ((facet_normals_valid = (AH.rows() == 0))) {
         // dimension==1, will need the facet normals immediately
         facets[f0].coord_full_dim(*this);
         facets[f1].coord_full_dim(*this);
         state = compute_state::full_dim;
      } else {
         state = compute_state::low_dim;
      }
   } else if (expect_redundant) {
      // p and p0 must be collinear; if the signs are different, they build a linearity
      const auto sign_of = [](const auto& v) {
         Int s = 0;
         for (const auto& x : v) {
            if ((s = sign(x)) != 0) break;
         }
         return s;
      };
      if (sign_of(points->row(p0)) != sign_of(points->row(p))) {
         interior_points += p0;
         vertices_so_far.clear();
         add_linealities(scalar2set(p0));
#if POLYMAKE_DEBUG
         if (debug >= do_dump)
            cout << "linealities:\n" << linealities_so_far << endl;
#endif
         state = compute_state::zero;
      }
      interior_points += p;
   } else {
      complain_redundant(p);
   }
}

template <typename E>
template <typename ISet>
void beneath_beyond_algo<E>::add_linealities(const ISet& point_set)
{
   const Int lin_rows = linealities_so_far.rows();
   linealities_so_far /= source_points->minor(point_set, All);
   const Set<Int> lin_basis = basis_rows(linealities_so_far);
   linealities_so_far = linealities_so_far.minor(lin_basis, All);
   // if new rays have been added to the lineality matrix, their indexes must be greater than those of already known linealities
   if (lin_basis.size() > lin_rows) {
      // TODO: introduce shifted_set or something similar
      const Set<Int> new_points_in_basis(attach_operation(lin_basis - sequence(0, lin_rows), operations::fix2<Int, operations::sub>(lin_rows)));
      points_in_lineality_basis += select(point_set, new_points_in_basis);
   }
   transform_points();
   AH = unit_matrix<E>(points->cols());
}

template <typename E>
void beneath_beyond_algo<E>::complain_redundant(Int p)
{
   throw std::runtime_error("beneath_beyond_algo: found redundant point " + std::to_string(p) + " while none was expected");
}

/** @param p the new point
    @param f the facet index to start from
    @retval index of the violated/incident facet or -1 if nothing found
*/
template <typename E>
Int beneath_beyond_algo<E>::descend_to_violated_facet(Int f, Int p)
{
   visited_facets += f;
   E fxp = facets[f].normal * points->row(p);
   if ((facets[f].orientation = sign(fxp)) <= 0) return f;

   // starting facet stays valid in this step: let's look for another one violated by p.
   // The search is performed in the dual graph, following the steepest descend of the
   // (square of the) distance between p and the facets

   if (expect_redundant) vertices_this_step += facets[f].vertices;
   fxp = fxp * fxp / facets[f].sqr_normal;    // square of the distance from p to the facet

   Int nextf;
   do {
#if POLYMAKE_DEBUG
      if (debug >= do_full_dump)
         cout << " *" << f << '(' << fxp << ')';
#endif
      nextf = -1;
      for (auto neighbor = entire(dual_graph.adjacent_nodes(f)); !neighbor.at_end(); ++neighbor) {
         const Int f2 = *neighbor;
         if (visited_facets.contains(f2)) continue;

         visited_facets += f2;
         E f2xp = facets[f2].normal * points->row(p);
         if ((facets[f2].orientation = sign(f2xp)) <= 0) return f2;

         if (expect_redundant) vertices_this_step += facets[f2].vertices;
         f2xp = f2xp * f2xp / facets[f2].sqr_normal;
#if POLYMAKE_DEBUG
         if (debug >= do_full_dump)
            cout << ' ' << f2 << '(' << f2xp << ')';
#endif
         if (f2xp <= fxp) {
            nextf = f2;
            fxp = f2xp;
         }
      }
   } while ((f = nextf) >= 0);

   return f;    // -1 : local minimum of sqr(distance) reached
}

namespace {

template <typename TSet>
Int first_or_none(const TSet& set)
{
   auto s = entire(set);
   return s.at_end() ? -1 : *s;
}

}

template <typename E>
void beneath_beyond_algo<E>::add_point_full_dim(Int p)
{
#if POLYMAKE_DEBUG
   if (debug >= do_dump)
      cout << "point " << p << "=[ " << points->row(p) << " ] : valid facets";
#endif
   // reset the working variables
   visited_facets.clear();
   if (expect_redundant) vertices_this_step.clear();

   // first try the facet added last in the previous step
   Int try_facet = valid_facet;
   do {
      if ((try_facet = descend_to_violated_facet(try_facet, p)) >= 0) {
         update_facets(try_facet, p);
         return;
      }
      for (auto f=entire(nodes(dual_graph)); !f.at_end(); ++f) {
         if (!visited_facets.contains(f.index())) {
            try_facet = f.index();
            break;
         }
      }
   } while (try_facet >= 0);

   // no violated facet found: p must be a redundant point

   if (expect_redundant) {
      interior_points += p;
#if POLYMAKE_DEBUG
      if (debug >= do_dump)
         cout << "\ninterior points: " << interior_points
              << "\n=======================================" << endl;
#endif
   } else {
      complain_redundant(p);
   }
}

template <typename E>
void beneath_beyond_algo<E>::facet_normals_low_dim()
{
   // facets must be orthogonal to the affine hull
   const Int d = points->cols();
   facet_nullspace = unit_matrix<E>(d);
   if (is_cone) {
      null_space(entire(rows(AH)), black_hole<Int>(), black_hole<Int>(), facet_nullspace);
   } else {
      SparseMatrix<E> AHaff=AH;
      // make all hyperplanes going thru the origin, but leave the far hyperplane untouched
      const auto far_hyperplane = unit_vector<E>(d, 0);
      for (auto r=entire(rows(AHaff));  !r.at_end();  ++r)
         if (*r != far_hyperplane)
            r->erase(0);
      null_space(entire(rows(AHaff)), black_hole<Int>(), black_hole<Int>(), facet_nullspace);
   }

   for (auto f=entire(facets);  !f.at_end();  ++f) {
      f->coord_low_dim(*this);
#if POLYMAKE_DEBUG
      if (debug >= do_dump) cout << f.index() << ": " << f->vertices << "=[ " << f->normal << " ]\n";
#endif
   }
}

template <typename E>
void beneath_beyond_algo<E>::add_point_low_dim(Int p)
{
   // update the affine hull
   if (reduce_nullspace(AH, p)) {
      // point set dimension increased
      if (facet_nullspace.rows() != 0) {
         generic_position = false;        // the base facet is more than a simplex
         facet_nullspace.clear();
      }

      // build a pyramid with the former polytope as a base and the point as an apex
      const Int nf_index = dual_graph.add_node();
      facet_info& nf = facets[nf_index];
      nf.vertices = vertices_so_far;
      if (expect_redundant) nf.vertices -= interior_points;

      // triangulation simplices are 'pyramidized' too
      if (make_triangulation) {
         for (auto simplex = entire(triangulation); !simplex.at_end(); ++simplex) {
            *simplex += p;
            nf.simplices.push_back(incident_simplex(*simplex, p));
         }
      }

      vertices_so_far += p;
      if ((facet_normals_valid = AH.rows() == 0))
         state = compute_state::full_dim;

      for (auto r=entire(ridges); !r.at_end(); ++r)
         *r += p;
      for (auto f=entire(nodes(dual_graph));  !f.at_end();  ++f) {
         // for all facets, except the new one
         if (f.index() != nf_index) {
            ridges(f.index(), nf_index) = facets[*f].vertices;
            facets[*f].vertices += p;
         }
         if (facet_normals_valid) {
            // the polytope became full-dimensional: will need the facet coordinates the whole rest of the time
            facets[*f].coord_full_dim(*this);
#if POLYMAKE_DEBUG
            if (debug >= do_dump) cout << f.index() << ": " << facets[*f].vertices << "=[ " << facets[*f].normal << " ]\n";
#endif
         }
      }
#if POLYMAKE_DEBUG
      if (debug >= do_dump) cout << "point " << p << "=[" << (*points)[p] << "] : dim increased\nAH:\n" << AH << endl;
#endif

   } else {
      // point set dimension not increased
      if (!facet_normals_valid) {
         // the polytope was a simplex, the facet coordinates are still not computed;
         // now we need them for the visibility region search.
         facet_normals_low_dim();
         facet_normals_valid = true;
      }
      add_point_full_dim(p);
   }
}

template <typename E>
void beneath_beyond_algo<E>::update_facets(Int f, const Int p)
{
#if POLYMAKE_DEBUG
   if (debug >= do_dump) cout << "\nupdating:";
#endif
   facet_queue.clear();
   facet_queue.push_back(f);

   if (expect_redundant) interior_points_this_step.clear();

   std::list<Int> incident_facets;
   if (facets[f].orientation == 0) {
      facets[f].vertices += p;
      generic_position = false;
      incident_facets.push_back(f);
   }

   /* BFS in the visible hemisphere.
      We visit all facets violated by or incident with p.
      Incident facets are important since they can contain redundant points not discovered before this iteration.
   */
   while (!facet_queue.empty()) {
      f = facet_queue.front();  facet_queue.pop_front();
      const Int f_orientation = facets[f].orientation;
      // remember the position where the new simplices will end
      auto new_simplex_end = triangulation.begin();

      if (f_orientation < 0) {
         // the facet is violated
#if POLYMAKE_DEBUG
         if (debug >= do_dump) cout << " -" << f;
#endif
         if (expect_redundant) interior_points_this_step += facets[f].vertices;

         // build new triangulation simplices using the triangulation of the facet
         if (make_triangulation) {
            for (auto is = entire(facets[f].simplices); !is.at_end(); ++is) {
               triangulation.push_front(*is->simplex);
               ++triang_size;
               // just take the existing simplex and replace the vertex behind the facet by the new point
               (triangulation.front() -= is->opposite_vertex) += p;
            }
         }
#if POLYMAKE_DEBUG
      } else {
         if (debug >= do_dump) cout << " " << f;
#endif
      }

      // check the neighbor facets
      for (auto e=entire(dual_graph.out_edges(f)); !e.at_end(); ++e) {
         const Int f2 = e.to_node();
         facet_info& nbf = facets[f2];
         if (!visited_facets.contains(f2)) {
            visited_facets += f2;
            nbf.orientation = sign(nbf.normal * points->row(p));
            if (nbf.orientation == 0) {
               // incident facet
               nbf.vertices += p;
               generic_position = false;
               incident_facets.push_back(f2);
            }
            if (nbf.orientation <= 0)
               facet_queue.push_back(f2);
            else if (expect_redundant)
               vertices_this_step += nbf.vertices;
         }

         if (f_orientation < 0) {
            if (nbf.orientation > 0) {
               // found a ridge on the visibility border: create a new facet
               const Int nf_index = dual_graph.add_node();
               facet_info& nf = facets[nf_index];
               nf.vertices = ridges[*e] + p;
               if (AH.rows())
                  nf.coord_low_dim(*this);
               else
                  nf.coord_full_dim(*this);
#if POLYMAKE_DEBUG
               if (debug == do_check) check_f(nf_index, p);
#endif
               ridges(nf_index, f2) = ridges[*e];
               incident_facets.push_back(nf_index);
               if (make_triangulation) {
                  nf.add_incident_simplices(triangulation.begin(), new_simplex_end);
               }
            } else if (nbf.orientation == 0) {
               if (make_triangulation) {
                  nbf.add_incident_simplices(triangulation.begin(), new_simplex_end);
               }
            }
         } else if (nbf.orientation == 0) {
            ridges[*e] += p;    // include the point into the edge, since it's incident to both facets
         }
      }

      if (f_orientation < 0) dual_graph.delete_node(f);
   }

   if (expect_redundant) {
      if (interior_points_this_step.empty()) { // = no violated facets visited
         interior_points += p;
#if POLYMAKE_DEBUG
         if (debug >= do_full_dump)
            cout << "\ninterior points: " << interior_points
                 << "\n=======================================";
         if (debug >= do_dump) cout << endl;
#endif
         return;
      }
      if (vertices_this_step.empty()) {
         process_new_lineality(p, incident_facets);
         return;
      }
      interior_points_this_step -= vertices_this_step;
      interior_points += interior_points_this_step;
   }

   /// The final phase of the step: create new edges in the dual graph
   Int min_ridge = points->cols() - AH.rows()-2;

   for (auto f_it = entire(incident_facets); !f_it.at_end(); ++f_it) {
      f = *f_it;
      const bool vis = visited_facets.contains(f);

      auto f2_it = f_it;
      for (++f2_it; !f2_it.at_end(); ++f2_it) {
         const Int f2 = *f2_it;
         // if both facets are incident to p, they could already have a connecting edge
         if (vis && visited_facets.contains(f2) && dual_graph.edge_exists(f, f2)) continue;

         const Set<Int> ridge = facets[f].vertices * facets[f2].vertices;
         if (ridge.size() >= min_ridge) {
            bool add = true;
            auto e = entire(dual_graph.out_edges(f));
            while (!e.at_end()) {
               const Int inc = incl(ridges[*e], ridge);
               if (inc == 2) {
                  ++e;
               } else {
                  if (inc <= 0)
                     dual_graph.out_edges(f).erase(e++);
                  if (inc >= 0) {
                     add = false;
                     break;
                  }
               }
            }
            if (add) ridges(f,f2) = ridge;
         }
      }
   }

   if (AH.rows() != 0) {
      vertices_so_far += p;
      if (expect_redundant) vertices_so_far -= interior_points_this_step;
   }
#if POLYMAKE_DEBUG
   if (debug >= do_dump) {
      cout << "\n";
      dump();
      if (expect_redundant) cout << "\ninterior points: " << interior_points << "\n";
      cout << "=======================================" << endl;
   }
#endif
   valid_facet = f;
}

template <typename E>
void beneath_beyond_algo<E>::process_new_lineality(const Int p, const std::list<Int>& incident_facets)
{
   Set<Int> rays_in_lineality, candidate_points;

   if (incident_facets.empty()) {
      // all rays visited so far belong to the new lineality
      if (AH.rows() == 0)
         // lineality fills the entire affine hull - no reason to continue calculations
         throw stop_calculation();
      rays_in_lineality = vertices_so_far - interior_points;

   } else if (dual_graph.nodes() > 1) {
      // the intersection of all incident_facets is the new lineality,
      // other vertices are candidates for restart
      auto fac_it = entire(incident_facets);
      candidate_points = rays_in_lineality = facets[*fac_it].vertices;
      while (!(++fac_it).at_end()) {
         rays_in_lineality *= facets[*fac_it].vertices;
         candidate_points += facets[*fac_it].vertices;
      }
      candidate_points -= rays_in_lineality;
      rays_in_lineality -= p;

   } else {
      // in the special case of two points and two facets the only candidate point belongs to the "violated" facet
      candidate_points = interior_points_this_step;
      rays_in_lineality = facets[incident_facets.front()].vertices;
   }

   add_linealities(rays_in_lineality);
   interior_points_this_step -= candidate_points;
   interior_points += interior_points_this_step;
   interior_points += p;
   interior_points += rays_in_lineality;
   vertices_so_far.clear();
   dual_graph.clear();
   if (make_triangulation) {
      triangulation.clear();
      triang_size = 0;
   }
   state = compute_state::zero;
#if POLYMAKE_DEBUG
   if (debug >= do_dump)
      cout << "restart\nlinealities:\n" << linealities_so_far << endl;
#endif
   for (const Int cp : candidate_points) {
      process_point(cp);
   }
#if POLYMAKE_DEBUG
   if (debug >= do_dump)
      cout << "resume with remaining points" << endl;
#endif
}

template <typename E>
void beneath_beyond_algo<E>::facet_info::coord_full_dim(const beneath_beyond_algo<E>& A)
{
   normal = rows(null_space(A.points->minor(vertices, All))).front();
   if (normal * A.points->row((A.vertices_so_far - vertices).front()) < 0)
      normal.negate();
   sqr_normal = sqr(normal);
}

template <typename E>
void beneath_beyond_algo<E>::facet_info::coord_low_dim(const beneath_beyond_algo<E>& A)
{
   ListMatrix<SparseVector<E>> Fn = A.facet_nullspace;
   for (const Int v : vertices)
      A.reduce_nullspace(Fn, v);
   normal = rows(Fn).front();
   if (normal * A.points->row((A.vertices_so_far - vertices).front()) < 0)
      normal.negate();
   sqr_normal = sqr(normal);
}

template <typename TSet>
Int single_or_nothing(const GenericSet<TSet, Int>& s)
{
   Int x = -1;
   auto e = entire(s.top());
   if (!e.at_end()) {
      x = *e; ++e;
      if (!e.at_end()) x = -1;
   }
   return x;
}

template <typename E> template <typename Iterator>
void beneath_beyond_algo<E>::facet_info::add_incident_simplices(Iterator s, Iterator s_end)
{
   for (; s != s_end; ++s) {
      Int opv = single_or_nothing(*s - vertices);
      if (opv >= 0)
         simplices.push_back(incident_simplex(*s, opv));
   }
}

#if POLYMAKE_DEBUG
template <typename E>
void beneath_beyond_algo<E>::dump() const
{
   cout << "dual_graph:\n";
   const bool show_normals = debug == do_full_dump && (AH.rows() == 0 || facet_nullspace.rows() != 0);
   for (auto f=entire(nodes(dual_graph)); !f.at_end(); ++f) {
      cout << f.index() << ": " << facets[*f].vertices;
      if (show_normals) cout << "=[ " << facets[*f].normal << " ]";
      if (debug == do_full_dump) {
         for (auto e = entire(f.out_edges()); !e.at_end(); ++e)
            cout << " (" << e.to_node() << ' ' << ridges[*e] << ')';
         if (make_triangulation) {
            cout << " <<";
            for (auto s = entire(facets[*f].simplices); !s.at_end(); ++s)
               cout << ' ' << *s->simplex << '-' << s->opposite_vertex;
            cout << " >>";
         }
         cout << endl;
      } else {
         cout << ' ' << f.adjacent_nodes() << endl;
      }
   }
}

template <typename E>
void beneath_beyond_algo<E>::check_fp(Int f_index, const facet_info& f, Int p, std::ostringstream& errors) const
{
   const E prod = points->row(p) * f.normal;
   if (f.vertices.contains(p)) {
      if (prod!=0)
         wrap(errors) << "facet(" << f_index << ") * incident vertex(" << p << ")=" << prod << endl;
   } else {
      if (prod<=0)
         wrap(errors) << "facet(" << f_index << ") * non-incident vertex(" << p << ")=" << prod << endl;
   }
}

// various consistency checks
template <typename E>
void beneath_beyond_algo<E>::check_p(Int p) const
{
   if (AH.rows() == 0 || facet_nullspace.rows() != 0) {
      std::ostringstream errors;

      for (auto f=entire(nodes(dual_graph)); !f.at_end(); ++f)
         check_fp(f.index(), facets[*f], p, errors);

      if (!errors.str().empty())
         throw std::runtime_error("beneath_beyond_algo - consistency checks failed:\n" + errors.str());
   }
}

template <typename E>
void beneath_beyond_algo<E>::check_f(Int f, Int last_p) const
{
   std::ostringstream errors;
   const facet_info& fi=facets[f];

   for (auto p = entire(range(0, last_p)); !p.at_end(); ++p)
      check_fp(f, fi, *p, errors);

   if (!errors.str().empty())
      throw std::runtime_error("beneath_beyond_algo - consistency checks failed:\n" + errors.str());
}

template <typename E>
void beneath_beyond_algo<E>::dump_p(Int p) const
{
   if (!AH.rows() || facet_nullspace.rows()) {
      for (auto f=entire(nodes(dual_graph)); !f.at_end(); ++f)
         if (f.degree()) {
            const E prod = points->row(p) * facets[*f].normal;
            cout << "facet(" << f.index() << "): prod=" << prod << ", sqr_dist=" << double(prod*prod/facets[*f].sqr_normal) << '\n';
         }
   }
}
#endif // POLYMAKE_DEBUG

} }


// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: