1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/list"
#include "polymake/PowerSet.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/FaceMap.h"
namespace polymake { namespace polytope { namespace face_lattice {
// first - all facets containing the given face
// second - intersection of these facets = the enclosing face
typedef std::pair<Set<Int>, Set<Int>> face_closure;
/** Compute the closure of a face S
@retval first all facets containing S
@retval second intersection of these facets = the enclosing face
*/
template <typename TSet, typename TMatrix>
face_closure
closure(const GenericSet<TSet, Int>& S, const GenericIncidenceMatrix<TMatrix>& M)
{
// intersection of all facets incident to vertices from S
const Set<Int> facets = accumulate(cols(M.minor(All,S)), operations::mul());
// intersection of all these facets
return face_closure(facets, accumulate(rows(M.minor(facets,All)), operations::mul()));
}
// Compute a base for a given face H
template <typename TSet, typename TMatrix>
Set<Int> c(const GenericSet<TSet, Int>& H, const GenericIncidenceMatrix<TMatrix>& M)
{
if (H.top().empty())
return Set<Int>();
auto H_i=entire(H.top());
Set<Int> C = scalar2set(*H_i); // c(H) to be returned at the end
Set<Int> facets = M.col(*H_i);
++H_i;
while (!H_i.at_end()) {
Int size = facets.size();
facets *= M.col(*H_i);
if (size > facets.size())
C.push_back(*H_i);
++H_i;
}
return C;
}
/// iterate over the (k+1)-faces containing a given k-face H
template <typename TSet, typename TMatrix>
class faces_one_above_iterator {
public:
typedef std::forward_iterator_tag iterator_category;
typedef face_closure value_type;
typedef const value_type& reference;
typedef const value_type* pointer;
typedef ptrdiff_t difference_type;
faces_one_above_iterator() {}
faces_one_above_iterator(const GenericSet<TSet, Int>& H_arg, const GenericIncidenceMatrix<TMatrix>& M_arg)
: H(&H_arg)
, M(&M_arg)
, candidates(sequence(0,M->cols()) - *H)
, done(false)
{
find_next();
}
reference operator* () const { return result; }
pointer operator-> () const { return &result; }
faces_one_above_iterator& operator++ () { find_next(); return *this; }
const faces_one_above_iterator operator++ (int) { faces_one_above_iterator copy=*this; operator++(); return copy; }
bool operator== (const faces_one_above_iterator& it) const { return candidates==it.candidates; }
bool operator!= (const faces_one_above_iterator& it) const { return !operator==(it); }
bool at_end() const { return done; }
void rewind()
{
candidates=sequence(0,M->cols()) - *H;
minimal.clear();
done=false;
find_next();
}
protected:
void find_next()
{
while (!candidates.empty()) {
Int v = candidates.front(); candidates.pop_front();
result = closure(*H+v, *M);
if (result.first.empty()) continue; // the closure would be the whole polytope - absolutely dull
if ((result.second * candidates).empty() && (result.second * minimal).empty()) {
minimal.push_back(v);
return;
}
}
done=true;
}
const GenericSet<TSet>* H;
const GenericIncidenceMatrix<TMatrix>* M;
Set<Int> candidates, minimal;
face_closure result;
bool done;
};
template <typename TSet, typename TMatrix>
faces_one_above_iterator<TSet, TMatrix>
all_faces_one_above(const GenericSet<TSet, Int>& H, const GenericIncidenceMatrix<TMatrix>& M)
{
return faces_one_above_iterator<TSet, TMatrix>(H,M);
}
template <typename DiagrammFiller, bool dual>
void add_edge(DiagrammFiller& HD, Int from, Int to, bool_constant<dual>)
{
if (dual) HD.add_edge(to,from); else HD.add_edge(from,to);
}
/// Compute the face lattice
template <typename TMatrix, typename DiagrammFiller, bool dual>
void compute(const GenericIncidenceMatrix<TMatrix>& VIF, DiagrammFiller HD, bool_constant<dual> Dual, Int dim_upper_bound = -1)
{
std::list<Set<Int>> Q; // queue of faces, which have been seen but who's faces above have not been computed yet.
FaceMap<> Faces;
// The bottom node: empty set (or dual: whole polytope)
const Int R = VIF.rows(), C = VIF.cols();
if (dual)
HD.add_node(sequence(0,R));
else
HD.add_node(Set<Int>());
if (C == 0) // the empty polytope
return;
HD.increase_dim();
Int n, end_this_dim = 0, d = 0;
if (__builtin_expect(C>1, 1)) {
// The first level: vertices.
copy_range(entire(all_subsets_of_1(sequence(0,C))), std::back_inserter(Q));
n= dual ? HD.add_nodes(C, cols(VIF).begin())
: HD.add_nodes(C, all_subsets_of_1(sequence(0,C)).begin());
end_this_dim=n+C;
Int end_next_dim = end_this_dim;
HD.increase_dim(); ++d;
for (Int i = n; i < end_this_dim; ++i)
add_edge(HD, 0, i, Dual);
if (__builtin_expect(C>2 && dim_upper_bound, 1)) {
bool facets_reached=false;
for (;;) {
Set<Int> H = Q.front(); Q.pop_front();
for (faces_one_above_iterator<Set<Int>, TMatrix> faces(H, VIF); !faces.at_end(); ++faces) {
if (faces->first.size() == 1) { // we have reached the facet level
if (!facets_reached) {
if (dual)
HD.add_nodes(R, all_subsets_of_1(sequence(0,R)).begin());
else
HD.add_nodes(R, rows(VIF).begin());
facets_reached=true;
}
add_edge(HD, n, end_this_dim+faces->first.front(), Dual);
} else {
Int &node_ref = Faces[c(faces->second, VIF)];
if (node_ref==-1) {
node_ref=HD.add_node(dual ? faces->first : faces->second);
Q.push_back(faces->second);
++end_next_dim;
}
add_edge(HD,n,node_ref,Dual);
}
}
if (++n == end_this_dim) {
HD.increase_dim();
if (__builtin_expect(Q.empty() || d == dim_upper_bound, 0)) break;
++d; end_this_dim=end_next_dim;
}
}
} else {
end_this_dim=n;
}
}
// The top node: whole polytope (or dual: empty set)
n = dual ? HD.add_node(Set<Int>()) : HD.add_node(sequence(0, C));
for (Int i = end_this_dim; i < n; ++i)
add_edge(HD, i, n, Dual);
}
typedef std::false_type Primal;
typedef std::true_type Dual;
/// Compute the bounded face lattice, starting always from the vertices (Primal mode)
template <typename TMatrix, typename TSet, typename DiagrammFiller>
void compute_bounded(const GenericIncidenceMatrix<TMatrix>& VIF,
const GenericSet<TSet, Int>& far_face,
DiagrammFiller HD, Int dim_upper_bound = -1)
{
std::list<Set<Int>> Q; // queue of faces, which have been seen but who's faces above have not been computed yet.
FaceMap<> Faces;
// The bottom node: empty set
const Int C = VIF.cols();
HD.add_node(Set<Int>());
HD.increase_dim();
Int end_this_dim = 0, end_next_dim = 0, d = 0, max_faces_cnt = 0;
// The first level: vertices.
const Set<Int> bounded_vertices = sequence(0, C) - far_face;
const Int n_bounded_vertices = bounded_vertices.size();
if (__builtin_expect(C>1, 1)) {
// fill first level and add the arcs from the empty set to the bounded vertices.
copy_range(entire(all_subsets_of_1(bounded_vertices)), std::back_inserter(Q));
Int n = HD.add_nodes(n_bounded_vertices, all_subsets_of_1(bounded_vertices).begin());
end_next_dim=end_this_dim=n+n_bounded_vertices;
HD.increase_dim(); ++d;
for (Int i = n; i < end_this_dim; ++i)
HD.add_edge(0, i);
if (__builtin_expect(C>2 && dim_upper_bound, 1)) {
for (;;) {
Set<Int> H = Q.front(); Q.pop_front();
bool is_max_face = true;
for (faces_one_above_iterator<Set<Int>, TMatrix> faces(H, VIF); !faces.at_end(); ++faces) {
Int& node_ref = Faces[c(faces->second, VIF)];
if (node_ref==-1) {
if ((faces->second * far_face).empty()) {
node_ref=HD.add_node(faces->second);
Q.push_back(faces->second);
++end_next_dim;
} else {
node_ref=-2;
continue;
}
} else if (node_ref==-2)
continue;
HD.add_edge(n,node_ref);
is_max_face=false;
}
if (is_max_face) ++max_faces_cnt;
if (++n == end_this_dim) {
if (__builtin_expect(Q.empty() || d == dim_upper_bound, 0)) break;
HD.increase_dim();
++d; end_this_dim=end_next_dim;
}
}
}
}
if (max_faces_cnt + end_next_dim-end_this_dim > 1) {
// The top node is connected to all inclusion-independent faces regardless of the dimension
Int n = HD.add_node(bounded_vertices);
for (Int i = 0; i < n; ++i)
if (HD.graph().out_degree(i) == 0)
HD.add_edge(i, n);
}
}
} } } // end namespace face_lattice
namespace pm {
template <typename TSet, typename TMatrix>
struct check_iterator_feature<polymake::polytope::face_lattice::faces_one_above_iterator<TSet, TMatrix>, end_sensitive> : std::true_type {};
template <typename TSet, typename TMatrix>
struct check_iterator_feature<polymake::polytope::face_lattice::faces_one_above_iterator<TSet, TMatrix>, rewindable> : std::true_type {};
} // end namespace pm
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|