1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/client.h"
#include "polymake/linalg.h"
#include "polymake/polytope/solve_LP.h"
namespace polymake { namespace polytope {
template <typename Scalar, typename Ineq>
Set<Int> initial_basis_from_known_vertex(const GenericMatrix<Ineq, Scalar>& H, const Vector<Scalar>& V)
{
const Set<Int> zero_rows = orthogonal_rows(H, V);
const Set<Int> basis_zero_rows = basis_rows(H.minor(zero_rows, All));
if (basis_zero_rows.size() == H.cols()-1)
return select(zero_rows, basis_zero_rows);
return Set<Int>();
}
template <typename Scalar>
void store_LP_Solution(BigObject& p, BigObject& lp, bool maximize, const LP_Solution<Scalar>& S)
{
if (S.status == LP_status::valid) {
lp.take(maximize ? Str("MAXIMAL_VALUE") : Str("MINIMAL_VALUE")) << S.objective_value;
lp.take(maximize ? Str("MAXIMAL_VERTEX") : Str("MINIMAL_VERTEX")) << S.solution;
p.take("FEASIBLE") << true;
} else if (S.status == LP_status::unbounded) {
if (maximize)
lp.take("MAXIMAL_VALUE") << std::numeric_limits<Scalar>::infinity();
else
lp.take("MINIMAL_VALUE") << -std::numeric_limits<Scalar>::infinity();
p.take("FEASIBLE") << true;
} else {
p.take("FEASIBLE") << false;
}
if (S.lineality_dim >= 0)
p.take("LINEALITY_DIM") << S.lineality_dim;
}
template <typename Scalar, typename Solver, typename=void>
struct allow_initial_basis : std::false_type {
bool select_arg(bool feasibility_known, const Set<Int>&) const
{
return feasibility_known;
}
};
template <typename Scalar, typename Solver>
struct allow_initial_basis<Scalar, Solver,
accept_valid_type<decltype(std::declval<Solver>().solve(std::declval<Matrix<Scalar>>(), std::declval<Matrix<Scalar>>(),
std::declval<Vector<Scalar>>(), true, std::declval<Set<Int>>()))>> : std::true_type {
const Set<Int>& select_arg(bool, const Set<Int>& initial_basis) const
{
return initial_basis;
}
};
template <typename Scalar, typename Solver>
void generic_lp_client(BigObject& p, BigObject& lp, bool maximize, const Solver& LP_solver)
{
std::string H_name;
const Matrix<Scalar> H = LP_solver.needs_feasibility_known()
? p.give_with_property_name("FACETS | INEQUALITIES", H_name)
: p.give("FACETS | INEQUALITIES"),
E = p.lookup("AFFINE_HULL | EQUATIONS");
const Vector<Scalar> Obj = lp.give("LINEAR_OBJECTIVE");
if (H.cols() != E.cols() &&
H.cols() && E.cols())
throw std::runtime_error("lp_client - dimension mismatch between Inequalities and Equations");
Set<Int> initial_basis;
const allow_initial_basis<Scalar, Solver> allow_basis{};
if (allow_basis) {
const Vector<Scalar> V = p.lookup("ONE_VERTEX");
if (V.dim())
initial_basis = E.rows() ? initial_basis_from_known_vertex(H/E, V) : initial_basis_from_known_vertex(H, V);
}
const bool feasibility_known = LP_solver.needs_feasibility_known() && H_name == "FACETS";
const LP_Solution<Scalar> S = LP_solver.solve(H, E, Obj, maximize, allow_basis.select_arg(feasibility_known, initial_basis));
store_LP_Solution(p, lp, maximize, S);
}
} }
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|