1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/PowerSet.h"
#include "polymake/Matrix.h"
#include "polymake/ListMatrix.h"
#include "polymake/SparseVector.h"
#include "polymake/Array.h"
#include "polymake/linalg.h"
#include <fstream>
namespace polymake { namespace polytope {
namespace {
template<typename Scalar, typename SetInt, typename Matrix>
SparseVector<Scalar>
new_row(Int i,
const GenericMatrix<Matrix,Scalar>& vertices,
const SetInt& basis,
Int basis_sign,
Scalar basis_det)
{
SparseVector<Scalar> new_row(vertices.rows());
Int s = basis_sign;
new_row[i] = s * basis_det;
for (const auto& k: basis) {
s = -s;
new_row[k] = s * det(vertices[i] / vertices.minor(basis-scalar2set(k), All));
}
return new_row;
}
} // end anonymous namespace
template<typename Scalar, typename TMatrix>
Matrix<Scalar>
full_dim_projection(const GenericMatrix<TMatrix, Scalar>& verts)
{
const Int ambient_dim = verts.cols();
const auto affine_hull = null_space(verts);
const Int codim = affine_hull.rows();
if (codim == 0)
return verts;
for (auto i = entire(all_subsets_of_k(sequence(0, ambient_dim),codim)); !i.at_end(); ++i)
if (!is_zero(det(affine_hull.minor(All, *i))))
return verts.minor(All, ~(Set<Int>(*i)));
throw std::runtime_error("full_dim_projection: This shouldn't happen");
}
template<typename Scalar, typename SetInt, typename Matrix>
std::pair<const SparseMatrix<Scalar>, const SparseMatrix<Scalar>>
secondary_cone_ineq(const GenericMatrix<Matrix, Scalar>& full_dim_verts, const Array<SetInt>& subdiv, OptionSet options)
{
#if POLYMAKE_DEBUG
if (rank(full_dim_verts) != full_dim_verts.cols())
throw std::runtime_error("secondary_cone_ineq: need full-dimensional vertices. Use full_dim_projection on your vertices first.");
#endif
const Int n_vertices = full_dim_verts.rows();
const Int ambient_dim = full_dim_verts.cols()-1;
const Int n_facets = subdiv.size();
//compute the set of all points that is not used in any face
SetInt not_used(sequence(0,n_vertices));
for (const auto& sd: subdiv)
not_used -= sd;
// the equations and inequalities for the possible weight vectors
// (without right hand side which will be 0)
ListMatrix<SparseVector<Scalar>> equats(0,n_vertices);
ListMatrix<SparseVector<Scalar>> inequs(0,n_vertices);
SparseMatrix<Scalar> eqs;
if (options["equations"] >> eqs)
equats /= eqs;
Set<Int> tozero = options["lift_to_zero"];
Int face;
if (!equats.rows() && tozero.empty() && options["lift_face_to_zero"]>>face)
tozero += subdiv[face];
for (const auto& j: tozero)
equats /= unit_vector<Scalar>(n_vertices,j);
// generate the equation and inequalities
for (Int i = 0; i < n_facets; ++i) {
const SetInt b(basis_rows(full_dim_verts.minor(subdiv[i], All)));
// we have to map the numbers the right way:
SetInt basis;
{
Int k = 0;
auto l = entire(subdiv[i]);
for (auto j = entire(b); !j.at_end(); ++j, ++k, ++l) {
while (k < *j) {
++k;
++l;
}
basis.push_back(*l);
}
}
const Scalar basis_det = det(full_dim_verts.minor(basis, All));
const Int basis_sign = basis_det > 0 ? 1 : -1;
const SetInt non_basis = subdiv[i]-basis;
// for each maximal face F, all points have to be lifted to the same facet
for (const auto& j: non_basis)
equats /= new_row(j, full_dim_verts, basis, basis_sign, basis_det);
// for all adjacent maximal faces, all vertices not contained in F have to be lifted
// in the same direction
for (Int f = i+1; f < n_facets; ++f)
if (rank(full_dim_verts.minor(subdiv[i] * subdiv[f], All)) == ambient_dim)
inequs /= new_row(*((subdiv[f]-subdiv[i]).begin()), full_dim_verts, basis, basis_sign, basis_det);
// additional equations for the non-used points
for (const auto& l: not_used)
inequs /= new_row(l, full_dim_verts, basis, basis_sign, basis_det);
}
return std::pair<const SparseMatrix<Scalar>,const SparseMatrix<Scalar>>(remove_zero_rows(inequs), remove_zero_rows(equats));
}
} }
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|