1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/Rational.h"
#include "polymake/SparseMatrix.h"
#include "polymake/SparseVector.h"
#include "polymake/Array.h"
#include "polymake/Vector.h"
#include "polymake/Set.h"
#include <fstream>
#include "polymake/linalg.h"
namespace polymake { namespace polytope {
namespace {
template<typename Scalar, std::enable_if_t<!std::is_same<Rational, Scalar>::value, int> = 42>
void multiply_by_lcm_denom(SparseVector<Scalar>& v){
}
template<typename Scalar, std::enable_if_t<std::is_same<Rational, Scalar>::value, int> = 42>
void multiply_by_lcm_denom(SparseVector<Scalar>& v){
Integer s = lcm(denominators(v));
if(s > 10000) return; // If the lcm is higher than 10000, it might be better to just stay with the fractions
auto e = entire(v.top());
while (!e.at_end()){
*e = *e*s;
e++;
}
}
template <typename VectorType>
void print_row(std::ostream& os,
const std::string& tag,
Int index,
const GenericVector<VectorType>& v,
const Array<std::string>& variable_names,
const char* relop = nullptr)
{
if (v == unit_vector<typename VectorType::element_type>(v.dim(),0)) // don't print the line " 0 >= -1 "
return;
SparseVector<typename VectorType::element_type> tmp(v);
// multiply inequality/equation by lcm
if (tag=="ie" || tag=="eq") {
multiply_by_lcm_denom(tmp);
}
auto e = entire(tmp.top());
typename VectorType::element_type free_term(0);
if (!e.at_end() && e.index() == 0) {
free_term=*e; ++e;
}
os << " " << tag;
if (tag != "obj") os << index;
os << ":";
while (!e.at_end()) {
os << ' ' << std::setiosflags(std::ios::showpos) << convert_to<double>(*e) << std::resetiosflags(std::ios::showpos)
<< ' ' << variable_names[e.index()-1];
++e;
}
if (relop) {
os << ' ' << relop << ' ' << convert_to<double>(-free_term);
} else if (!is_zero(free_term)) {
os << ' ' << std::setiosflags(std::ios::showpos) << convert_to<double>(free_term) << std::resetiosflags(std::ios::showpos);
}
os << '\n';
}
} // end anonymous namespace
template<typename Scalar, bool is_lp>
void print_lp(BigObject p, BigObject lp, const bool maximize, std::ostream& os)
{
const SparseMatrix<Scalar>
IE = p.give("FACETS | INEQUALITIES"),
EQ = p.lookup("AFFINE_HULL | EQUATIONS");
const SparseVector<Scalar> LO = lp.give("LINEAR_OBJECTIVE");
const Int amb_dim = std::max(IE.cols(), EQ.cols());
const Int n_variables = amb_dim-1;
// Empty inequality matrix implies that these are facets.
// In polymake this only appears for the empty polytope
// but this cannot be encoded properly in an LP file.
// Note: this will not trigger a feasibility check
if (p.exists("FEASIBLE") && !p.lookup("FEASIBLE") ||
IE.rows() == 0 && EQ.rows() == 0)
throw std::runtime_error("poly2lp: input is not known to be infeasible");
Array<std::string> variable_names;
if (lp.get_attachment("COORDINATE_LABELS") >> variable_names) {
if (variable_names.size() != n_variables)
throw std::runtime_error("dimension mismatch between the polytope and COORDINATE_LABELS");
} else {
variable_names.resize(n_variables);
for (Int j=0; j < n_variables; ++j)
variable_names[j]='x' + std::to_string(j+1);
}
Array<bool> integers(1);
if(is_lp){
Array<bool> tmp = lp.get_attachment("INTEGER_VARIABLES");
// this attachment might omit the homogenization coordinate
if (tmp.size() == amb_dim-1)
integers.append(tmp);
else
integers = tmp;
} else {
integers.resize(amb_dim);
Set<Int> tmp = lp.give("INTEGER_VARIABLES");
for(const auto& e : tmp){
integers[e] = true;
}
}
os << std::setprecision(16)
<< (maximize ? "MAXIMIZE\n" : "MINIMIZE\n");
print_row(os, "obj", 0, LO, variable_names);
os << "Subject To\n";
for (auto ie=entire(rows(IE)); !ie.at_end(); ++ie) {
print_row(os, "ie", ie.index(), *ie, variable_names, ">=");
}
for (auto eq=entire(rows(EQ)); !eq.at_end(); ++eq) {
print_row(os, "eq", eq.index(), *eq, variable_names, "=");
}
os << "BOUNDS\n";
for (Int i = 0; i < n_variables; ++i)
os << " " << variable_names[i] << " free\n";
if (!integers.empty()) {
os << "GENERAL\n";
for (Int i = 1; i < integers.size(); ++i)
if (integers[i]) os << " " << variable_names[i-1] << '\n';
}
os << "END" << endl;
}
} }
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|