1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
function far_points(Matrix) : c++ (include => "polymake/linalg.h");
object Polytope {
# Here we have to compute the intersection of the cone with one linear halfspace.
# This is done implicitly in the initial rules. Beware: the combinatorics may change.
# with the check for already_homogeneous we provide for the following special case:
# we might have a cone that already *is* a homogenized polytope,
# e.g. when we extract one polytope from a polyhedral complex (which is done via the corresponding function for the fan).
# for this, we just run over the first column of RAYS and LINEALITY_SPACE and check whether we only have zeros and ones
# we also need to make sure that the polytope has at least one bounded vertex
# if true, we make a true copy, otherwise we use FACETS to construct the polytope
method construct(Cone) {
my ($proto, $cone)=@_;
my $already_homogeneous=0;
my $have_point=0;
if (defined(my $verts=$cone->lookup("RAYS"))) {
$already_homogeneous=1;
foreach (@{$verts->col(0)}) {
if ($_ == 1) {
$have_point = 1;
} elsif ($_ != 0) {
$already_homogeneous = 0;
last;
}
}
my $lin_space;
if ( $already_homogeneous && defined( $lin_space=$cone->lookup("LINEALITY_SPACE") ) && $lin_space->rows ) {
foreach (@{$lin_space->col(0)}) { if ( $_!=0 && $_!=1 ) { $already_homogeneous=0; last; } }
}
}
if ($already_homogeneous && $have_point) {
Polymake::Core::BigObject::new_copy($proto, $cone);
} else {
Polymake::Core::BigObject::new_filled($proto, $cone->name, CONE_AMBIENT_DIM=>$cone->CONE_AMBIENT_DIM, INEQUALITIES=>$cone->FACETS, EQUATIONS=>$cone->LINEAR_SPAN);
}
}
rule LINEALITY_SPACE : FACETS | INEQUALITIES {
my $F;
if (defined (my $AH=$this->lookup("AFFINE_HULL | EQUATIONS"))) {
$F=$this->give("FACETS | INEQUALITIES") / $AH;
} else {
$F=$this->give("FACETS | INEQUALITIES");
}
my $cmp=$this->prepare_computations;
$this->LINEALITY_SPACE=common::lineality_space($F);
}
precondition : CONE_AMBIENT_DIM { $this->CONE_AMBIENT_DIM >= 1 }
precondition : FEASIBLE;
weight 1.10;
override : SUPER::cone_only;
rule VALID_POINT : VERTICES | POINTS {
my $p=$this->give("VERTICES | POINTS");
if ($p->rows > 0) {
$this->VALID_POINT(temporary) = $p->row(0);
}
}
weight 0.10;
# IMPORTANT
# For the combinatorial rules below bear in mind the following semantics:
# (1) The combinatorics of an unbounded and pointed polyhedron is defined to be the combinatorics
# of the projective closure.
# (2) The combinatorics of an unbounded polyhedron which is not pointed is defined to be the
# combinatorics of the quotient modulo the lineality space.
# Therefore: Each property which is grouped under "Combinatorics" always refers to a polytope.
# simplex case
rule SIMPLICITY, SIMPLICIALITY : COMBINATORIAL_DIM {
$this->SIMPLICIALITY=$this->SIMPLICITY=$this->COMBINATORIAL_DIM;
}
precondition : COMBINATORIAL_DIM, N_VERTICES {
$this->COMBINATORIAL_DIM >= 0 && $this->COMBINATORIAL_DIM+1 == $this->N_VERTICES
}
weight 0.1;
rule SIMPLICIALITY : F_VECTOR, F2_VECTOR {
# a polytope is k-simplicial if each k-face is a simplex,
# i.e. f_{0,k} = (k+1) * f_k
my $k=0;
my $d=$#{$this->F_VECTOR};
++$k while ($k<=$d && $this->F2_VECTOR->elem(0,$k) == ($k+1)*$this->F_VECTOR->[$k]);
$this->SIMPLICIALITY=$k-1;
}
precondition : COMBINATORIAL_DIM, N_VERTICES {
$this->COMBINATORIAL_DIM+1 != $this->N_VERTICES
}
rule SIMPLICITY : F_VECTOR, F2_VECTOR {
# dual notion to simpliciality,
# i.e. f_{k,d-1} = (k+1) * f_k
my $k=0;
my $d=$#{$this->F_VECTOR};
++$k while ($k<=$d && $this->F2_VECTOR->elem($d-$k,$d) == ($k+1)*$this->F_VECTOR->[$d-$k]);
$this->SIMPLICITY=$k-1;
}
precondition : COMBINATORIAL_DIM, N_VERTICES {
$this->COMBINATORIAL_DIM+1 != $this->N_VERTICES
}
rule FACE_SIMPLICITY : COMBINATORIAL_DIM {
$this->FACE_SIMPLICITY=$this->COMBINATORIAL_DIM;
}
precondition : SIMPLE;
rule FACE_SIMPLICITY : F2_VECTOR {
# a polytope is k-face-simple if all k-faces are simple
# i.e. 2 f_{1,k} = f_{0,1,k} = k * f_{0,k}
my $k=1;
my $dim=$this->F2_VECTOR->rows-1;
++$k while ($k<=$dim && 2 * $this->F2_VECTOR->elem($k,1) == $k * $this->F2_VECTOR->elem($k,0));
$this->FACE_SIMPLICITY=$k-1;
}
precondition : !SIMPLE;
rule CUBICALITY : F2_VECTOR {
# a polytope is k-cubical if its graph is bipartite and all j-faces have 2^j vertices for all j<=k
# i.e. f_{j,0} = 2^j * f_j
my $k=1;
my $k2=2; # 2^k
my $dim=$this->F2_VECTOR->rows-1;
my $n_vertices=$this->F2_VECTOR->elem(0,0);
while ($k<$dim) {
$k2*=2;
last if $this->F2_VECTOR->elem($k+1,0) != $k2 * $this->F2_VECTOR->elem($k+1,$k+1);
++$k;
}
++$k if ($k==$dim && $n_vertices==2*$k2); # it's a cube
$this->CUBICALITY=$k;
}
precondition : CONE_DIM { $this->CONE_DIM >= 2 };
precondition : GRAPH.BIPARTITE;
rule N_VERTEX_FACET_INC : F2_VECTOR {
$this->N_VERTEX_FACET_INC=$this->F2_VECTOR->[0]->[-1];
}
weight 0.1;
rule CUBICAL : FACET_SIZES {
# this is a special case of the previous rule which is useful for 4-polytopes with a very large face lattice
my $cubical=1;
foreach my $fs (@{$this->FACET_SIZES}) {
$cubical=0, last if $fs != 8;
}
$this->CUBICAL=$cubical;
}
precondition : GRAPH.BIPARTITE, COMBINATORIAL_DIM {
$this->GRAPH->BIPARTITE && $this->COMBINATORIAL_DIM==4
}
weight 1.10;
rule GRAPH.ADJACENCY : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
$this->GRAPH->ADJACENCY=vertex_graph($this->HASSE_DIAGRAM);
}
precondition : COMBINATORIAL_DIM { $this->COMBINATORIAL_DIM>=2 };
weight 1.20;
rule DUAL_GRAPH.ADJACENCY : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
$this->DUAL_GRAPH->ADJACENCY=facet_graph($this->HASSE_DIAGRAM);
}
precondition : COMBINATORIAL_DIM { $this->COMBINATORIAL_DIM>=2 };
weight 1.20;
rule CUBICALITY : COMBINATORIAL_DIM {
$this->CUBICALITY= $this->COMBINATORIAL_DIM>0;
}
precondition : !GRAPH.BIPARTITE;
weight 0.1;
rule CUBICAL : CUBICALITY, COMBINATORIAL_DIM {
$this->CUBICAL= $this->CUBICALITY >= $this->COMBINATORIAL_DIM-1;
}
weight 0.1;
rule COCUBICALITY : F2_VECTOR {
# a polytope is k-cocubical if its dual is k-cubical
# f_{d-1-j,d-1} = 2^j * f_j for all j<=k
my $k=1;
my $k2=2; # 2^k
my $dim=$this->F2_VECTOR->rows-1;
my $n_facets=$this->F2_VECTOR->elem($dim,$dim);
while ($k<$dim) {
$k2*=2;
last if $this->F2_VECTOR->elem($dim-($k+1),$dim) != $k2 * $this->F2_VECTOR->elem($dim-($k+1),$dim-($k+1));
++$k;
}
++$k if ($k==$dim && $n_facets==2*$k2); # it's a cross polytope
$this->COCUBICALITY=$k;
}
precondition : DUAL_GRAPH.BIPARTITE;
rule COCUBICALITY : COMBINATORIAL_DIM {
$this->COCUBICALITY= $this->COMBINATORIAL_DIM>0;
}
precondition : !DUAL_GRAPH.BIPARTITE;
weight 0.1;
rule COCUBICAL : COCUBICALITY, COMBINATORIAL_DIM {
$this->COCUBICAL= $this->COCUBICALITY >= $this->COMBINATORIAL_DIM-1;
}
weight 0.1;
rule NEIGHBORLINESS : F_VECTOR {
# a polytope is k-neighborly if any k vertices form a face (which is necessarily simplicial)
# i.e. f_{k-1} = binomial(n,k), where n = N_VERTICES
my $d=$#{$this->F_VECTOR};
if ( $d >= 0 ) {
my $k=1;
my $n_vertices=$this->F_VECTOR->[0];
++$k while ($k<=$d && $this->F_VECTOR->[$k] == binomial($n_vertices, $k+1));
$this->NEIGHBORLINESS=$k;
} else {
$this->NEIGHBORLINESS=0;
}
}
rule BALANCE : F_VECTOR {
# dual notion to neighborliness
# i.e. f_{d-k} = binomial(n,k), where n = N_FACETS
my $d=$#{$this->F_VECTOR};
if ( $d >= 0 ) {
my $k=0;
my $n_facets=$this->F_VECTOR->[$d];
++$k while ($k<=$d && $this->F_VECTOR->[$d-$k] == binomial($n_facets, $k+1));
$this->BALANCE=$k;
} else {
$this->BALANCE=0;
}
}
rule SIMPLICIAL : SIMPLICIALITY, COMBINATORIAL_DIM {
$this->SIMPLICIAL= $this->SIMPLICIALITY >= $this->COMBINATORIAL_DIM-1;
}
weight 0.1;
rule SIMPLE : SIMPLICITY, COMBINATORIAL_DIM {
$this->SIMPLE= $this->SIMPLICITY >= $this->COMBINATORIAL_DIM-1;
}
weight 0.1;
rule NEIGHBORLY : NEIGHBORLINESS, COMBINATORIAL_DIM {
$this->NEIGHBORLY= $this->NEIGHBORLINESS >= floor($this->COMBINATORIAL_DIM/2);
}
weight 0.1;
rule BALANCED : BALANCE, COMBINATORIAL_DIM {
$this->BALANCED= $this->BALANCE >= floor($this->COMBINATORIAL_DIM/2);
}
weight 0.1;
rule FATNESS : F_VECTOR {
$this->FATNESS = (new Float($this->F_VECTOR->[1]+$this->F_VECTOR->[2]-20))/(new Float($this->F_VECTOR->[0]+$this->F_VECTOR->[3]-10));
}
precondition : COMBINATORIAL_DIM { $this->COMBINATORIAL_DIM==4 }
precondition : N_VERTICES { $this->N_VERTICES>=6 }
rule COMPLEXITY : F_VECTOR, F2_VECTOR {
$this->COMPLEXITY = (new Float($this->F2_VECTOR->elem(0,3)-20))/(new Float($this->F_VECTOR->[0]+$this->F_VECTOR->[3]-10));
}
precondition : COMBINATORIAL_DIM { $this->COMBINATORIAL_DIM==4 }
precondition : N_VERTICES { $this->N_VERTICES>=6 }
rule TWO_FACE_SIZES : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
$this->TWO_FACE_SIZES=two_face_sizes($this->HASSE_DIAGRAM);
}
precondition : COMBINATORIAL_DIM {
$this->COMBINATORIAL_DIM>=2
}
rule TWO_FACE_SIZES : GRAPH.ADJACENCY, VERTICES_IN_FACETS {
two_face_sizes_simple($this);
}
precondition : SIMPLE;
precondition : COMBINATORIAL_DIM {
$this->COMBINATORIAL_DIM>=2
}
rule SUBRIDGE_SIZES : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
$this->SUBRIDGE_SIZES=subridge_sizes($this->HASSE_DIAGRAM);
}
precondition : COMBINATORIAL_DIM {
$this->COMBINATORIAL_DIM>=2
}
rule SUBRIDGE_SIZES : DUAL_GRAPH.ADJACENCY, VERTICES_IN_FACETS {
subridge_sizes_simple($this);
}
precondition : SIMPLICIAL;
precondition : COMBINATORIAL_DIM {
$this->COMBINATORIAL_DIM>=2
}
rule GRAPH.EDGE_DIRECTIONS : GRAPH.ADJACENCY, VERTICES, FAR_FACE {
$this->GRAPH->EDGE_DIRECTIONS = edge_directions($this->GRAPH,$this->VERTICES,$this->FAR_FACE);
}
rule GRAPH.SQUARED_EDGE_LENGTHS : VERTICES, GRAPH.ADJACENCY, FAR_FACE {
my $el = new EdgeMap<Undirected, Scalar>($this->GRAPH->ADJACENCY);
my $vert = dehomogenize($this->VERTICES);
for ( my $e=entire(edges($this->GRAPH->ADJACENCY)); $e; ++$e ) {
my $w= $vert->[$e->from_node]-$vert->[$e->to_node];
$el->[$$e] = $w * $w;
}
$this->GRAPH->SQUARED_EDGE_LENGTHS=$el;
}
precondition : FAR_FACE { $this->FAR_FACE->size()==0 }
rule DUAL_GRAPH.DIHEDRAL_ANGLES : FACETS, DUAL_GRAPH.ADJACENCY {
my $da = new EdgeMap<Undirected, Float>($this->DUAL_GRAPH->ADJACENCY);
my $facets = $this->FACETS;
for ( my $e=entire(edges($this->DUAL_GRAPH->ADJACENCY)); $e; ++$e ) {
$da->[$$e] = dihedral_angle($facets->[$e->from_node],$facets->[$e->to_node]);
}
$this->DUAL_GRAPH->DIHEDRAL_ANGLES = $da;
}
precondition : FULL_DIM;
precondition : FAR_FACE { $this->FAR_FACE->size()==0 }
rule BOUNDED : VERTICES | POINTS {
my $lin_space;
if (defined($lin_space = $this->lookup("LINEALITY_SPACE | INPUT_LINEALITY")) && $lin_space->rows > 0) {
$this->BOUNDED = 0;
} else {
foreach my $v (@{$this->give("VERTICES | POINTS")}) {
if ($v->[0]==0) {
$this->BOUNDED=0;
return;
}
}
$this->BOUNDED=1;
}
}
weight 1.10;
rule BOUNDED : FACETS | INEQUALITIES, LINEALITY_SPACE {
$this->BOUNDED = H_input_bounded($this);
}
weight 3.10;
rule POINTED : {
$this->POINTED=1;
}
precondition : BOUNDED;
weight 0.1;
rule BOUNDED: {
$this->BOUNDED=0;
}
precondition : !POINTED;
weight 0.1;
rule SPLITS : VERTICES, FACETS, GRAPH.ADJACENCY, CONE_DIM {
$this->SPLITS = splits($this->VERTICES,$this->GRAPH->ADJACENCY,$this->FACETS,$this->CONE_DIM-1);
}
precondition : CONE_DIM {
$this->CONE_DIM > 1;
}
precondition : POINTED;
rule SPLIT_COMPATIBILITY_GRAPH.ADJACENCY : FACETS, AFFINE_HULL, SPLITS {
$this->SPLIT_COMPATIBILITY_GRAPH->ADJACENCY = split_compatibility_graph($this->SPLITS,$this);
}
rule TRIANGULATION.REFINED_SPLITS : SPLITS, VERTICES, TRIANGULATION.FACETS {
$this->TRIANGULATION->REFINED_SPLITS=splits_in_subdivision($this->VERTICES,$this->TRIANGULATION->FACETS,$this->SPLITS);
}
rule WEAKLY_CENTERED : FACETS, AFFINE_HULL {
my $zero=0;
foreach my $f (@{$this->FACETS}) {
if ($f->[0] < 0) {
$this->WEAKLY_CENTERED=0;
return;
}
}
foreach my $f (@{$this->AFFINE_HULL}) {
if ($f->[0] != $zero) {
$this->WEAKLY_CENTERED=0;
return;
}
}
$this->WEAKLY_CENTERED=1;
}
weight 1.10;
rule WEAKLY_CENTERED : VERTICES | POINTS, LINEALITY_SPACE | INPUT_LINEALITY, CONE_AMBIENT_DIM{
my $pt = new Polytope<Scalar>(POINTS=>[unit_vector<Scalar>($this->CONE_AMBIENT_DIM, 0)]);
$this->WEAKLY_CENTERED = contains_V_V_via_LP($pt, $this);
}
weight 4.10;
rule CENTERED : FACETS, AFFINE_HULL {
foreach my $f (@{$this->FACETS}) {
if ($f->[0] <= 0) {
$this->CENTERED=0;
return;
}
}
foreach my $f (@{$this->AFFINE_HULL}) {
if ($f->[0] != 0) {
$this->CENTERED=0;
return;
}
}
$this->CENTERED=1;
}
weight 1.10;
rule CENTERED : VERTICES | POINTS, LINEALITY_SPACE | INPUT_LINEALITY, CONE_AMBIENT_DIM{
$this->CENTERED = $this->contains_in_interior(unit_vector($this->CONE_AMBIENT_DIM, 0));
}
weight 4.10;
rule WEAKLY_CENTERED : {
$this->WEAKLY_CENTERED=1;
}
precondition : CENTERED;
weight 0.1;
rule CENTRALLY_SYMMETRIC, CS_PERMUTATION : VERTICES {
cs_permutation($this);
}
weight 1.10;
rule TRIANGULATION.BOUNDARY.FACETS, TRIANGULATION.BOUNDARY.VERTEX_MAP, TRIANGULATION.BOUNDARY.FACET_TRIANGULATIONS : TRIANGULATION.FACETS, VERTICES_IN_FACETS {
($this->TRIANGULATION->BOUNDARY->FACETS, $this->TRIANGULATION->BOUNDARY->VERTEX_MAP, $this->TRIANGULATION->BOUNDARY->FACET_TRIANGULATIONS)=
triang_boundary($this->TRIANGULATION->FACETS, $this->VERTICES_IN_FACETS);
}
rule TRIANGULATION(any).BOUNDARY.FACETS, TRIANGULATION(any).BOUNDARY.VERTEX_MAP, TRIANGULATION(any).BOUNDARY.FACET_TRIANGULATIONS : VERTICES_IN_FACETS, N_FACETS, N_VERTICES {
$this->TRIANGULATION->BOUNDARY->FACETS=[ @{$this->VERTICES_IN_FACETS} ];
$this->TRIANGULATION->BOUNDARY->VERTEX_MAP = sequence(0,$this->N_VERTICES);
$this->TRIANGULATION->BOUNDARY->FACET_TRIANGULATIONS=[ map { scalar2set($_) } 0 .. $this->N_FACETS-1 ];
}
precondition : SIMPLICIAL;
weight 1.10;
rule SPECIAL_FACETS : VERTEX_BARYCENTER, VERTICES_IN_FACETS, VERTICES {
my $v=dehomogenize($this->VERTEX_BARYCENTER);
my $vif=$this->VERTICES_IN_FACETS;
my @special_facets=();
for (my $f=0; $f<$vif->rows(); ++$f) {
my $vertices_in_f=$this->VERTICES->minor($vif->[$f],~[0]);
my $cone_f=new Cone<Scalar>(RAYS=>$vertices_in_f);
my $facets_of_cone=$cone_f->FACETS;
my $is_special=1;
for (my $ff=0; $ff<$facets_of_cone->rows(); ++$ff) {
if ($v*$facets_of_cone->[$ff]<0) {
$is_special=0;
last;
}
}
push @special_facets, $f if $is_special;
}
$this->SPECIAL_FACETS=\@special_facets;
}
precondition : BOUNDED;
precondition : CENTERED;
# @category Triangulation and volume
# the orientation of the simplices of [[TRIANGULATION_INT]] in the given order of the [[POINTS]]
# @return Array<Int> - +1/-1 array specifying the sign of the determinant of each simplex
user_method TRIANGULATION_INT_SIGNS : TRIANGULATION_INT, POINTS {
my $this=shift;
triang_sign($this->TRIANGULATION_INT, $this->POINTS);
}
# clients capable of handling different coordinate types
rule VERTEX_BARYCENTER : VERTICES, N_VERTICES {
$this->VERTEX_BARYCENTER=$this->N_VERTICES ? barycenter($this->VERTICES) : undef;
}
precondition : BOUNDED;
weight 1.10;
rule default.volume: CENTROID, VOLUME : VERTICES, TRIANGULATION.FACETS {
centroid_volume($this, $this->VERTICES, $this->TRIANGULATION->FACETS);
}
precondition : BOUNDED;
precondition : FULL_DIM;
weight 2.30;
rule CENTROID, VOLUME : POINTS, TRIANGULATION_INT {
centroid_volume($this, $this->POINTS, $this->TRIANGULATION_INT);
}
precondition : BOUNDED;
precondition : FULL_DIM;
weight 2.40;
rule VOLUME : {
$this->VOLUME = 0;
}
precondition : !FULL_DIM;
weight 0.1;
rule VOLUME : {
$this->VOLUME = 0;
}
precondition : CONE_AMBIENT_DIM {
$this->CONE_AMBIENT_DIM == 0;
}
weight 0.1;
rule VOLUME : {
$this->VOLUME = 1;
}
precondition : FULL_DIM;
precondition : CONE_AMBIENT_DIM {
$this->CONE_AMBIENT_DIM == 1;
}
weight 0.1;
rule default.squared_relative_volumes: SQUARED_RELATIVE_VOLUMES : VERTICES, TRIANGULATION.FACETS {
$this->SQUARED_RELATIVE_VOLUMES=squared_relative_volumes($this->VERTICES, $this->TRIANGULATION->FACETS);
}
precondition : BOUNDED;
precondition : CONE_DIM {
$this->CONE_DIM>1;
}
weight 2.20;
rule default.squared_relative_volumes: SQUARED_RELATIVE_VOLUMES : POINTS, TRIANGULATION_INT {
$this->SQUARED_RELATIVE_VOLUMES=squared_relative_volumes($this->POINTS, $this->TRIANGULATION_INT);
}
precondition : BOUNDED;
precondition : CONE_DIM {
$this->CONE_DIM>1;
}
weight 2.30;
rule MAHLER_VOLUME : VOLUME {
$this->MAHLER_VOLUME = $this->VOLUME * polarize($this)->VOLUME;
# calling "polarize" makes it necessary to add WEAKLY_CENTERED to the preconditions below
# even if it is implied by CENTERED
}
precondition : BOUNDED;
precondition : WEAKLY_CENTERED;
precondition : CENTERED;
precondition : FULL_DIM;
rule MINIMAL_VERTEX_ANGLE : VERTICES, VERTEX_BARYCENTER {
$this->MINIMAL_VERTEX_ANGLE = minimal_vertex_angle($this);
}
# Triangulation
# quick fix for #302
# compute minimal non-faces of a simplicial polytope
# using the corresponding functions from application topaz
rule MINIMAL_NON_FACES : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
$this->MINIMAL_NON_FACES=topaz::minimal_non_faces($this->HASSE_DIAGRAM);
}
weight 4.10;
precondition : SIMPLICIAL;
precondition : CONE_DIM { $this->CONE_DIM <= 12; }
# this is not really a strict precondition for the algorithm
# it used to be implemented as a dynamic weight but those don't work as expected (#7)
# and this causes the lawler client to run for some medium sized (5-dim) examples where it
# is a lot slower than the one via the hasse-diagram
rule MINIMAL_NON_FACES : VERTICES_IN_FACETS, CONE_DIM, N_VERTICES {
my $f = new Array<Set<Int>>(@{$this->VERTICES_IN_FACETS});
$this->MINIMAL_NON_FACES=topaz::lawler_minimal_non_faces($f,$this->N_VERTICES);
}
weight 4.10;
precondition : SIMPLICIAL;
precondition : CONE_DIM { $this->CONE_DIM > 12; }
# this is not really a strict precondition for the algorithm
# it used to be implemented as a dynamic weight but those don't work as expected (#7)
# and this causes the lawler client to run for some medium sized (5-dim) examples where it
# is a lot slower than the one via the hasse-diagram
rule TRIANGULATION(any).VERTEX_LABELS = VERTEX_LABELS;
rule TRIANGULATION(any).COORDINATES : VERTICES {
$this->TRIANGULATION->COORDINATES(temporary)=$this->VERTICES->minor(All,~[0]);
}
weight 0.10;
rule TRIANGULATION(any).BALL : {
$this->TRIANGULATION->BALL=1;
}
weight 0.1;
rule TRIANGULATION(any).VOLUME = VOLUME;
rule TRIANGULATION(any).G_DIM : CONE_AMBIENT_DIM {
$this->TRIANGULATION->G_DIM=$this->CONE_AMBIENT_DIM-1;
}
rule TRIANGULATION(any).BOUNDARY.SPHERE : {
$this->TRIANGULATION->BOUNDARY->SPHERE=1;
}
weight 0.1;
# @category Geometry
# returns the dimension of the ambient space of the polytope
# @return Int
user_method AMBIENT_DIM() : CONE_AMBIENT_DIM {
my ($self)=@_;
return ($self->CONE_AMBIENT_DIM-1);
}
# @category Geometry
# returns the dimension of the polytope
# @return Int
user_method DIM {
my ($self)=@_;
if (!defined ($self->lookup("LINEALITY_SPACE | INPUT_LINEALITY | INPUT_RAYS | RAYS | INEQUALITIES | EQUATIONS | FACETS | LINEAR_SPAN"))) {
return $self->COMBINATORIAL_DIM;
}
return $self->CONE_DIM-1;
}
}
# @category Producing a cone
# retuns the recession cone (tail cone, characteristic cone) of a polytope
# @param Polytope<Scalar> P polytope
# @return Cone<Scalar>
user_function recession_cone<Scalar>(Polytope<Scalar>) {
my $self=shift;
my @r= map { $_->[0]==0 ? $_ : (); } @{$self->VERTICES};
my $rays=new Matrix<Scalar>(@r);
my $c=new Cone<Scalar>(RAYS=>$rays->minor(All,~[0]), LINEALITY_SPACE=>$self->LINEALITY_SPACE->minor(All,~[0]));
return $c;
}
# @category Geometry
# Compute the dihedral angle between two (oriented) affine or linear hyperplanes.
# @param Vector<Scalar> H1 : first hyperplane
# @param Vector<Scalar> H2 : second hyperplane
# @option Bool deg output in degrees rather than radians, default is false
# @option Bool cone hyperplanes seen as linear hyperplanes, default is false
# @return Float
# @example
# > $H1 = new Vector(1,5,5);
# > $H2 = new Vector(1,-5,5);
# > print dihedral_angle($H1,$H2,deg=>1);
# | 90
user_function dihedral_angle<Scalar> (Vector<Scalar>, Vector<Scalar>; { deg=>0, cone=>0 }) {
# this code is slightly more elaborate than necessary in order to compute exactly as long as possible
my ($H1,$H2,$options) = @_;
if (!$options->{cone}) {
$H1=$H1->slice(range_from(1)); $H2=$H2->slice(range_from(1));
}
my ($norm1, $norm2) = (sqrt(convert_to<Float>($H1*$H1)), sqrt(convert_to<Float>($H2*$H2)));
$H1=(1/$norm1)*convert_to<Float>($H1); $H2=(1/$norm2)*convert_to<Float>($H2);
my $pi=2*Math::Trig::asin(1);
my $angle=$pi-Math::Trig::acos($H1*$H2);
if ($options->{deg}) {
$angle=$angle/$pi*180;
}
return $angle;
}
# @category Geometry
# Compute the mean or median distance of the [[VERTICES]] to the [[VERTEX_BARYCENTER]].
# @param Polytope p
# @option Bool median use median instead of arithmetic mean
# @return Float
user_function center_distance (Polytope; {median=>0}) {
my ($p,$options) = @_;
die "center_distance only for bounded polytopes!" unless $p->BOUNDED;
my @dists = map { sqrt(convert_to<Float>(sqr($_))) } @{$p->VERTICES - repeat_row($p->VERTEX_BARYCENTER,$p->N_VERTICES)};
if ($options->{median}) {
return median(\@dists);
} else {
return average(\@dists);
}
}
# @category Producing a polytope from polytopes
# Produces the Minkowski sum of //P1// and //P2//.
# @param Polytope P1
# @param Polytope P2
# @return Polytope
# @example [prefer cdd] The following stores the minkowski sum of a square and a triangle in the variable $p
# and then prints its vertices.
# > $p = minkowski_sum(cube(2),simplex(2));
# > print $p->VERTICES;
# | 1 -1 -1
# | 1 2 -1
# | 1 -1 2
# | 1 2 1
# | 1 1 2
user_function minkowski_sum<Scalar> (Polytope<type_upgrade<Scalar>>, Polytope<type_upgrade<Scalar>> ) {
my ($p1,$p2) = @_;
return minkowski_sum<Scalar>(1,$p1,1,$p2);
}
# @category Producing a polytope from polytopes
# Produces the polytope //lambda//*//P1//+//mu//*//P2//, where * and + are scalar multiplication
# and Minkowski addition, respectively.
# @param Scalar lambda
# @param Polytope P1
# @param Scalar mu
# @param Polytope P2
# @return Polytope
# @example [prefer cdd] The following stores the minkowski sum of a scaled square and a triangle in the variable $p
# and then prints its vertices.
# > $p = minkowski_sum(2,cube(2),1,simplex(2));
# > print $p->VERTICES;
# | 1 -2 -2
# | 1 3 -2
# | 1 -2 3
# | 1 3 2
# | 1 2 3
user_function minkowski_sum<Scalar> (type_upgrade<Scalar>, Polytope<type_upgrade<Scalar>>, type_upgrade<Scalar>, Polytope<type_upgrade<Scalar>> ) {
my ($l1,$p1,$l2,$p2) = @_;
my $v1=$p1->give("VERTICES | POINTS");
my $v2=$p2->give("VERTICES | POINTS");
my $p=minkowski_sum_client<Scalar>($l1,$v1,$l2,$v2);
my $ls1=$p1->give("LINEALITY_SPACE");
my $ls2=$p2->give("LINEALITY_SPACE");
my $p_out = new Polytope<Scalar>(POINTS=>$p, INPUT_LINEALITY=>$ls1/$ls2);
$p_out->description = "Minkowski sum of ".$l1."*".$p1->name." and ".$l2."*".$p2->name;
return $p_out;
}
# @category Producing a polytope from polytopes
# Computes the ([[Polytope::VERTICES]] of the) __Minkowski sum__ of a list of polytopes using the algorithm by Fukuda described in
# Komei Fukuda, From the zonotope construction to the Minkowski addition of convex polytopes, J. Symbolic Comput., 38(4):1261-1272, 2004.
# @param Array<Polytope> summands
# @return Polytope
# @example [nocompare] > $p = minkowski_sum_fukuda([cube(2),simplex(2),cross(2)]);
# > print $p->VERTICES;
# | 1 3 -1
# | 1 3 1
# | 1 -1 -2
# | 1 1 3
# | 1 -1 3
# | 1 2 -2
# | 1 -2 2
# | 1 -2 -1
user_function minkowski_sum_fukuda<E>(Polytope<type_upgrade<E>> +) : c++ (include => "polymake/polytope/minkowski_sum_fukuda.h");
# @category Producing a polytope from scratch
# Create the vertices of a zonotope from a matrix whose rows are input points or vectors.
# @param Matrix M
# @option Bool centered_zonotope default 1
# @return Matrix
# @example [nocompare]
# The following stores the vertices of a parallelogram with the origin as its vertex barycenter and prints them:
# > $M = new Matrix([[1,1,0],[1,1,1]]);
# > print zonotope_vertices_fukuda($M);
# | 1 0 -1/2
# | 1 0 1/2
# | 1 -1 -1/2
# | 1 1 1/2
user_function zonotope_vertices_fukuda<E>(Matrix<E> { centered_zonotope => 1 }) : c++ (include => "polymake/polytope/minkowski_sum_fukuda.h");
# @category Geometry
# Given two matrices L (n x d) and R (m x d) such that (L/R) has rank r, select all (r+1-n)-subsets C of rows of R such that (L,S) or (S,L) is a circuit.
# Optionally, if d > r, a basis H for the orthogonal span of the affine hull of (L/R) may be given.
# @param Matrix L
# @param Matrix R
# @option Matrix H
# @return Array<Set>
# @example Divide the vertex set of the 3-cube into a body diagonal L and six remaining vertices R.
# To find the subsets of R that complete L to a circuit, type
# > $c = cube(3);
# > $L = $c->VERTICES->minor([0,7],All);
# > $R = $c->VERTICES->minor([1,2,3,4,5,6],All);
# > print circuit_completions($L,$R);
# | {0 1 3}
# | {2 4 5}
user_function circuit_completions<Scalar>(Matrix<Scalar>,Matrix<Scalar>; Matrix<Scalar> = new Matrix<Scalar>()) {
my ($L,$R,$H) = @_;
if ($H->rows() == 0) {
$H = new Matrix<Scalar>(0, $R->cols());
}
my $a= circuit_completions_impl($L, $R, $H);
return $a;
}
# Local Variables:
# mode: perl
# cperl-indent-level: 3
# indent-tabs-mode:nil
# End:
|