1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
# @category Geometry
object Cone {
rule N_INPUT_RAYS : INPUT_RAYS {
$this->N_INPUT_RAYS=$this->INPUT_RAYS->rows;
}
weight 0.1;
rule N_INPUT_LINEALITY : INPUT_LINEALITY {
$this->N_INPUT_LINEALITY=$this->INPUT_LINEALITY->rows;
}
weight 0.1;
rule N_RAYS : RAYS {
$this->N_RAYS=$this->RAYS->rows;
}
weight 0.1;
rule N_RAYS : F_VECTOR {
$this->N_RAYS=$this->F_VECTOR->[0];
}
precondition : COMBINATORIAL_DIM { $this->COMBINATORIAL_DIM >= 1 }
weight 0.1;
rule N_FACETS : FACETS {
$this->N_FACETS=$this->FACETS->rows;
}
weight 0.1;
rule N_FACETS : F_VECTOR, COMBINATORIAL_DIM {
if ($this->COMBINATORIAL_DIM>0) {
$this->N_FACETS=$this->F_VECTOR->[$this->COMBINATORIAL_DIM-1];
} else {
if ($this->COMBINATORIAL_DIM==0) {
$this->N_FACETS=1; # a vertex or just a ray
} else {
$this->N_FACETS=0; # empty polytope or trivial cone
}
}
}
weight 0.1;
rule RAY_LABELS : FACET_LABELS, FACETS_THRU_RAYS {
$this->RAY_LABELS=induced_labels($this->FACET_LABELS, $this->FACETS_THRU_RAYS);
}
# the following rule exists to force the existence of default labels, e.g., to allow meaningful FACET_LABELS
rule RAY_LABELS : N_RAYS {
my @labels = (0..$this->N_RAYS-1);
$this->RAY_LABELS="@labels";
}
weight 4.10;
rule FACET_LABELS : RAY_LABELS, RAYS_IN_FACETS {
$this->FACET_LABELS=induced_labels($this->RAY_LABELS, $this->RAYS_IN_FACETS);
}
# The purpose of the following rule is to have simpler preconditions in subsequent rules.
# The scheduler efficiently handles preconditions which amount to checking a boolean.
rule FULL_DIM : CONE_AMBIENT_DIM, CONE_DIM {
$this->FULL_DIM=($this->CONE_AMBIENT_DIM==$this->CONE_DIM);
}
weight 0.1;
rule CONE_DIM : CONE_AMBIENT_DIM, LINEAR_SPAN {
$this->CONE_DIM= $this->CONE_AMBIENT_DIM - $this->LINEAR_SPAN->rows;
}
weight 0.1;
rule LINEAR_SPAN : CONE_AMBIENT_DIM {
$this->LINEAR_SPAN=new Matrix<Scalar>(0, $this->CONE_AMBIENT_DIM);
}
precondition : FULL_DIM;
weight 0.1;
rule CONE_DIM : RAYS | INPUT_RAYS {
my $cmp=$this->prepare_computations;
my $r;
if (defined (my $l=$this->lookup("LINEALITY_SPACE | INPUT_LINEALITY"))) {
$r = $this->give("RAYS | INPUT_RAYS") / $l;
} else {
$r = $this->give("RAYS | INPUT_RAYS");
}
$this->CONE_DIM=rank($r);
}
weight 1.10;
rule COMBINATORIAL_DIM : CONE_DIM, LINEALITY_DIM {
$this->COMBINATORIAL_DIM = $this->CONE_DIM - $this->LINEALITY_DIM-1;
}
weight 0.10;
rule COMBINATORIAL_DIM : F_VECTOR {
$this->COMBINATORIAL_DIM = $this->F_VECTOR->dim;
}
weight 0.1;
rule CONE_DIM : COMBINATORIAL_DIM, LINEALITY_DIM {
$this->CONE_DIM = $this->COMBINATORIAL_DIM + $this->LINEALITY_DIM+1;
}
weight 0.1;
rule LINEALITY_DIM : COMBINATORIAL_DIM, CONE_DIM {
$this->LINEALITY_DIM = $this->CONE_DIM - $this->COMBINATORIAL_DIM-1;
}
weight 0.1;
rule LINEALITY_DIM : LINEALITY_SPACE {
$this->LINEALITY_DIM=$this->LINEALITY_SPACE->rows;
}
weight 0.1;
rule POINTED : LINEALITY_DIM {
$this->POINTED= $this->LINEALITY_DIM == 0;
}
weight 0.1;
rule POINTED : RAYS {
if (defined (my $l=$this->lookup("INPUT_LINEALITY | LINEALITY_SPACE"))) {
$this->POINTED = $l->rows==0;
} else {
$this->POINTED = true;
}
}
weight 0.1;
rule POINTED : INPUT_RAYS {
if (defined (my $l=$this->lookup("INPUT_LINEALITY | LINEALITY_SPACE"))) {
if ($l->rows>0) { $this->POINTED=false; return; }
}
my $v = zero_vector<Scalar>() | (ones_vector<Scalar>() | $this->INPUT_RAYS);
my $w = new Vector<Scalar>($v->cols);
$w->[0] = 1;
$w->[1] = -1;
my $lp = new LinearProgram<Scalar>(LINEAR_OBJECTIVE => unit_vector<Scalar>($v->cols, 1));
my $p = new Polytope<Scalar>(INEQUALITIES => -$v/$w, LP => $lp);
$this->POINTED = $p->LP->MAXIMAL_VALUE > 0;
}
weight 3.10;
rule POINTED : FACETS | INEQUALITIES, CONE_AMBIENT_DIM {
my $f = $this->give("FACETS | INEQUALITIES");
my $l = $this->lookup("LINEAR_SPAN | EQUATIONS");
$this->POINTED = rank(defined($l) && $l->rows > 0 ? $f/$l : $f) == $this->CONE_AMBIENT_DIM;
}
rule cone_only : LINEALITY_SPACE : FACETS | INEQUALITIES {
my $F;
my $AH = $this->lookup("LINEAR_SPAN | EQUATIONS");
if (defined($AH) && $AH->rows > 0) {
$F = $this->give("FACETS | INEQUALITIES") / $AH;
} else {
$F = $this->give("FACETS | INEQUALITIES");
}
my $cmp = $this->prepare_computations;
$this->LINEALITY_SPACE = common::null_space($F);
}
precondition : CONE_AMBIENT_DIM { $this->CONE_AMBIENT_DIM >= 1 }
weight 1.10;
rule LINEALITY_DIM, LINEALITY_SPACE : CONE_AMBIENT_DIM {
$this->LINEALITY_DIM = 0;
$this->LINEALITY_SPACE = new Matrix<Scalar>(0, $this->CONE_AMBIENT_DIM);
}
precondition : POINTED;
weight 0.10;
rule ONE_RAY : RAYS {
$this->ONE_RAY = $this->RAYS->[0];
}
precondition : N_RAYS;
weight 0.10;
rule cone_only : REL_INT_POINT : RAYS {
$this->REL_INT_POINT=barycenter($this->RAYS);
}
precondition : N_RAYS;
weight 1.10;
rule cone_only : REL_INT_POINT : LINEALITY_DIM, CONE_AMBIENT_DIM {
$this->REL_INT_POINT=$this->LINEALITY_DIM ? zero_vector<Scalar>($this->CONE_AMBIENT_DIM) : undef;
}
precondition : !N_RAYS;
weight 0.1;
rule N_RAYS : RAYS_IN_FACETS {
$this->N_RAYS = $this->RAYS_IN_FACETS->cols;
}
weight 0.1;
rule N_FACETS : RAYS_IN_FACETS {
$this->N_FACETS=$this->RAYS_IN_FACETS->rows;
}
weight 0.1;
rule N_RIDGES : RAYS_IN_RIDGES {
$this->N_RIDGES=$this->RAYS_IN_RIDGES->rows;
}
weight 0.1;
rule ALTSHULER_DET : RAYS_IN_FACETS {
$this->ALTSHULER_DET=altshuler_det($this->VERTICES_IN_FACETS);
}
rule GRAPH.NODE_LABELS = RAY_LABELS;
rule DUAL_GRAPH.NODE_LABELS = FACET_LABELS;
rule N_RAY_FACET_INC : RAYS_IN_FACETS {
my $n=0;
foreach (@{$this->RAYS_IN_FACETS}) { $n+=@$_ }
$this->N_RAY_FACET_INC=$n;
}
weight 1.10;
rule SIMPLICIAL : { $this->SIMPLICIAL=1 }
precondition : ESSENTIALLY_GENERIC;
weight 0.1;
rule SIMPLICIAL_CONE : N_RAYS, LINEALITY_DIM, COMBINATORIAL_DIM {
if ( $this->LINEALITY_DIM > 0 ) {
$this->SIMPLICIAL_CONE = 0;
} else {
$this->SIMPLICIAL_CONE = ( $this->N_RAYS == $this->COMBINATORIAL_DIM+1 );
}
}
weight 0.1;
rule SIMPLICIAL : COMBINATORIAL_DIM, RAYS_IN_FACETS {
foreach (@{$this->RAYS_IN_FACETS}) {
if (@$_ != $this->COMBINATORIAL_DIM) {
$this->SIMPLICIAL=0;
return;
}
}
$this->SIMPLICIAL=1;
}
weight 1.10;
rule SIMPLE : COMBINATORIAL_DIM, RAYS_IN_FACETS {
foreach (@{transpose($this->RAYS_IN_FACETS)}) {
if (@$_ != $this->COMBINATORIAL_DIM) {
$this->SIMPLE=0;
return;
}
}
$this->SIMPLE=1;
}
weight 1.10;
# @category Combinatorics
# Ray degrees of the cone
# @return Vector<Int> - in the same order as [[RAYS]]
user_method VERTEX_DEGREES = GRAPH.NODE_DEGREES;
# @category Combinatorics
# Facet degrees of the polytope.
# The __degree__ of a facet is the number of adjacent facets.
# @return Vector<Int> - in the same order as [[FACETS]]
user_method FACET_DEGREES = DUAL_GRAPH.NODE_DEGREES;
# @category Backward compatibility
# The diameter of the [[GRAPH]] of the cone
# @return Int
user_method DIAMETER = GRAPH.DIAMETER;
# @category Backward compatibility
# The diameter of the [[DUAL_GRAPH]]
# @return Int
user_method DUAL_DIAMETER = DUAL_GRAPH.DIAMETER;
# @category Backward compatibility
# True if the [[GRAPH]] contains no triangle
# @return Bool
user_method TRIANGLE_FREE = GRAPH.TRIANGLE_FREE;
# @category Backward compatibility
# True if the [[DUAL_GRAPH]] contains no triangle
# @return Bool
user_method DUAL_TRIANGLE_FREE = DUAL_GRAPH.TRIANGLE_FREE;
# @category Combinatorics
# True if the [[GRAPH]] is bipartite
# @return Bool
user_method EVEN = GRAPH.BIPARTITE;
# @category Combinatorics
# True if the [[DUAL_GRAPH]] is bipartite
# @return Bool
user_method DUAL_EVEN = DUAL_GRAPH.BIPARTITE;
# @category Topology
# Difference of the black and white nodes if the [[GRAPH]] is [[BIPARTITE]].
# Otherwise -1.
# @return Int
user_method GRAPH_SIGNATURE = GRAPH.SIGNATURE;
# @category Topology
# Difference of the black and white nodes if the [[DUAL_GRAPH]] is [[BIPARTITE]].
# Otherwise -1.
# @return Int
user_method DUAL_GRAPH_SIGNATURE = DUAL_GRAPH.SIGNATURE;
# @category Combinatorics
# Connectivity of the [[GRAPH]]
# this is the minimum number of nodes that have to be removed from the [[GRAPH]] to make it disconnected
# @return Int
user_method CONNECTIVITY = GRAPH.CONNECTIVITY;
# @category Combinatorics
# Connectivity of the [[DUAL_GRAPH]]
# this is the minimum number of nodes that have to be removed from the [[DUAL_GRAPH]] to make it disconnected
# @return Int
user_method DUAL_CONNECTIVITY = DUAL_GRAPH.CONNECTIVITY;
rule GRAPH.CONNECTED : {
$this->GRAPH->CONNECTED = 1;
}
weight 0.1;
rule DUAL_GRAPH.CONNECTED : {
$this->DUAL_GRAPH->CONNECTED = 1;
}
weight 0.1;
rule N_RAY_FACET_INC : F2_VECTOR {
$this->N_RAY_FACET_INC=$this->F2_VECTOR->[0]->[-1];
}
weight 0.1;
rule F2_VECTOR : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE, COMBINATORIAL_DIM {
my $d=$this->COMBINATORIAL_DIM;
if ( $d < 0 ) { # polytope empty or point
$this->F2_VECTOR=undef;
} else {
$this->F2_VECTOR=f2_vector($this->HASSE_DIAGRAM);
}
}
weight 3.10;
# only for COMBINATORIAL_DIM >= 1
# as diagonal requires at least one row/column in F2_VECTOR
rule F_VECTOR : F2_VECTOR {
$this->F_VECTOR=$this->F2_VECTOR->diagonal;
}
precondition : COMBINATORIAL_DIM { $this->COMBINATORIAL_DIM >= 1 }
weight 0.10;
rule F_VECTOR : HASSE_DIAGRAM.N_NODES, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
my $n=$this->HASSE_DIAGRAM->N_NODES;
if ( $n >= 2 ) {
my $rk = $this->HASSE_DIAGRAM->rank();
my @f= map { scalar(@{$this->HASSE_DIAGRAM->nodes_of_rank($_)}) } (1 .. $rk-1);
$this->F_VECTOR= \@f;
}
}
weight 0.10;
rule F_VECTOR : N_FACETS, N_RAYS, COMBINATORIAL_DIM {
my $dim = $this->COMBINATORIAL_DIM;
if ($dim>=0) {
my $vec = new Vector<Integer>($dim);
if ($dim>0) {
$vec->[0] = $this->N_RAYS;
if ($dim>1) {
$vec->[$dim-1] = $this->N_FACETS;
}
if ($dim==3) {
$vec->[1] = $vec->[0]+$vec->[2]-2; # euler
}
}
$this->F_VECTOR=$vec;
}
}
precondition : COMBINATORIAL_DIM { $this->COMBINATORIAL_DIM < 4 }
weight 0.10;
rule N_RIDGES = DUAL_GRAPH.N_EDGES;
rule N_EDGES = GRAPH.N_EDGES;
rule F_VECTOR : N_FACETS, N_RAYS, GRAPH.N_EDGES, DUAL_GRAPH.N_EDGES, COMBINATORIAL_DIM {
my $dim = $this->COMBINATORIAL_DIM;
my $vec = new Vector<Integer>($dim);
$vec->[0] = $this->N_RAYS;
$vec->[$dim-1] = $this->N_FACETS;
$vec->[1] = $this->GRAPH->N_EDGES;
$vec->[$dim-2] = $this->DUAL_GRAPH->N_EDGES;
if ($dim==5) {
$vec->[2] = -$vec->[0]+$vec->[1]+$vec->[3]-$vec->[4]+2 ; # euler
}
$this->F_VECTOR=$vec;
}
precondition : COMBINATORIAL_DIM { $this->COMBINATORIAL_DIM == 4 || $this->COMBINATORIAL_DIM == 5 }
weight 0.10;
rule GRAPH.ADJACENCY : RAYS_IN_FACETS {
$this->GRAPH->ADJACENCY=graph_from_incidence($this->RAYS_IN_FACETS);
}
weight 3.10;
rule DUAL_GRAPH.ADJACENCY : RAYS_IN_FACETS {
$this->DUAL_GRAPH->ADJACENCY=dual_graph_from_incidence($this->RAYS_IN_FACETS);
}
weight 3.10;
rule HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE : RAYS_IN_FACETS, COMBINATORIAL_DIM {
$this->HASSE_DIAGRAM=hasse_diagram($this->RAYS_IN_FACETS, $this->COMBINATORIAL_DIM+1);
}
weight 6.20;
rule COMBINATORIAL_DIM : RAYS_IN_FACETS {
$this->COMBINATORIAL_DIM=dim_from_incidence($this->RAYS_IN_FACETS);
}
weight 3.10;
rule COMBINATORIAL_DIM : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
$this->COMBINATORIAL_DIM=$this->HASSE_DIAGRAM->dim;
}
weight 0.1;
rule cone_only : GRAPH.ADJACENCY : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
$this->GRAPH->ADJACENCY=vertex_graph($this->HASSE_DIAGRAM);
}
rule RAY_SIZES : RAYS_IN_FACETS {
$this->RAY_SIZES(temporary)=[ map { scalar(@$_) } @{transpose($this->RAYS_IN_FACETS)} ];
}
weight 1.10;
rule FACET_SIZES : RAYS_IN_FACETS {
$this->FACET_SIZES(temporary)=[ map { scalar(@$_) } @{$this->RAYS_IN_FACETS} ];
}
weight 1.10;
rule POSITIVE : RAYS | INPUT_RAYS {
foreach my $v (@{$this->give("RAYS | INPUT_RAYS")}) {
foreach my $x (@$v) {
if ($x<0) {
$this->POSITIVE=0;
return;
}
}
}
$this->POSITIVE=1;
}
precondition : POINTED;
weight 1.10;
rule LINEAR_SPAN : RAYS | INPUT_RAYS {
my $cmp=$this->prepare_computations;
my $r =new Matrix<Scalar>($this->give("RAYS | INPUT_RAYS"));
if (defined (my $l = $this->lookup("LINEALITY_SPACE | INPUT_LINEALITY"))) {
$r /= $l;
}
$this->LINEAR_SPAN=null_space($r);
}
weight 1.10;
rule RAYS_IN_FACETS : RAYS, FACETS {
my $cmp=$this->prepare_computations;
$this->RAYS_IN_FACETS=incidence_matrix($this->FACETS, $this->RAYS);
}
rule INPUT_RAYS_IN_FACETS : INPUT_RAYS, FACETS {
my $cmp=$this->prepare_computations;
$this->INPUT_RAYS_IN_FACETS=incidence_matrix($this->FACETS, $this->INPUT_RAYS);
}
rule RAYS_IN_INEQUALITIES : INEQUALITIES, RAYS {
my $cmp=$this->prepare_computations;
$this->RAYS_IN_INEQUALITIES=incidence_matrix($this->INEQUALITIES, $this->RAYS);
}
rule RAYS_IN_FACETS, RAYS, LINEALITY_SPACE : INPUT_RAYS_IN_FACETS, INPUT_RAYS {
my $cmp=$this->prepare_computations;
compress_incidence_primal($this);
$this->remove("INPUT_RAYS_IN_FACETS");
}
incurs VertexPerm;
rule RAYS_IN_FACETS, FACETS, LINEAR_SPAN : RAYS_IN_INEQUALITIES, INEQUALITIES {
my $cmp=$this->prepare_computations;
compress_incidence_dual($this);
$this->remove("RAYS_IN_INEQUALITIES");
}
incurs FacetPerm;
rule RAYS_IN_RIDGES : RAYS_IN_FACETS, COMBINATORIAL_DIM {
if ($this->COMBINATORIAL_DIM >= 2) {
my $uhd = upper_hasse_diagram($this->RAYS_IN_FACETS, $this->COMBINATORIAL_DIM, $this->COMBINATORIAL_DIM - 2);
my $nodes = $uhd->nodes_of_rank($this->COMBINATORIAL_DIM - 2);
my @rir = map {$uhd->FACES->[$_]} (@{$nodes});
$this->RAYS_IN_RIDGES = new IncidenceMatrix(\@rir);
} else {
$this->RAYS_IN_RIDGES = new IncidenceMatrix(0, $this->RAYS_IN_FACETS->cols);
}
}
precondition : !exists(HASSE_DIAGRAM);
rule RAYS_IN_RIDGES : HASSE_DIAGRAM {
if ($this->HASSE_DIAGRAM->dim >= 2) {
my $nodes = $this->HASSE_DIAGRAM->nodes_of_dim($this->HASSE_DIAGRAM->dim - 2);
my @rir = map {$this->HASSE_DIAGRAM->FACES->[$_]} (@{$nodes});
$this->RAYS_IN_RIDGES = new IncidenceMatrix(\@rir);
} else {
$this->RAYS_IN_RIDGES = new IncidenceMatrix(0, $this->HASSE_DIAGRAM->dim + 1);
}
}
rule FACETS, LINEAR_SPAN : RAYS, LINEALITY_SPACE, RAYS_IN_FACETS {
my $cmp=$this->prepare_computations;
facets_from_incidence($this);
}
precondition : N_RAYS;
rule RAYS, LINEALITY_SPACE : FACETS, LINEAR_SPAN, RAYS_IN_FACETS {
my $cmp=$this->prepare_computations;
vertices_from_incidence($this);
}
# helper clients for various visualization tasks
# FIXME check dependence on dim
rule RIF_CYCLIC_NORMAL, NEIGHBOR_FACETS_CYCLIC_NORMAL : CONE_DIM, RAYS, LINEAR_SPAN, RAYS_IN_FACETS, DUAL_GRAPH.ADJACENCY {
neighbors_cyclic_normal_primal($this);
}
precondition : POINTED;
precondition : CONE_DIM { $this->CONE_DIM>=3 && $this->CONE_DIM<=4 }
# FIXME check dependence on dim
rule RIF_CYCLIC_NORMAL : RAYS_IN_FACETS {
# types are Array<Array<Int>> and IncidenceMatrix
$this->RIF_CYCLIC_NORMAL = rows($this->RAYS_IN_FACETS);
}
precondition : COMBINATORIAL_DIM { $this->COMBINATORIAL_DIM<=1 }
weight 1.10;
rule FTR_CYCLIC_NORMAL : FACETS_THRU_RAYS {
# types are Array<Array<Int>> and IncidenceMatrix
$this->FTR_CYCLIC_NORMAL = rows($this->FACETS_THRU_RAYS);
}
precondition : COMBINATORIAL_DIM { $this->COMBINATORIAL_DIM<=1 }
weight 1.10;
# FIXME check dependence on dim
rule FTR_CYCLIC_NORMAL, NEIGHBOR_RAYS_CYCLIC_NORMAL : CONE_DIM, FACETS, RAYS_IN_FACETS, GRAPH.ADJACENCY {
neighbors_cyclic_normal_dual($this);
}
precondition : POINTED;
precondition : CONE_DIM { $this->CONE_DIM>=3 && $this->CONE_DIM<=4 }
# @category Combinatorics
# The interior //d//-dimensional simplices of a cone of combinatorial dimension //d//
# symmetries of the cone are NOT taken into account
rule MAX_INTERIOR_SIMPLICES : COMBINATORIAL_DIM, RAYS, RAYS_IN_FACETS {
$this->MAX_INTERIOR_SIMPLICES = max_interior_simplices($this);
}
# @category Combinatorics
# The interior //d-1//-dimensional simplices of a cone of combinatorial dimension //d//
# symmetries of the cone are NOT taken into account
rule INTERIOR_RIDGE_SIMPLICES, MAX_BOUNDARY_SIMPLICES : COMBINATORIAL_DIM, RAYS, RAYS_IN_FACETS {
my $pair=interior_and_boundary_ridges($this);
$this->INTERIOR_RIDGE_SIMPLICES = $pair->first;
$this->MAX_BOUNDARY_SIMPLICES = $pair->second;
}
# @category Combinatorics
# A matrix whose rows contain the cocircuit equations of a cone C
# symmetries of the cone are NOT taken into account
rule COCIRCUIT_EQUATIONS : COMBINATORIAL_DIM, RAYS, RAYS_IN_FACETS, INTERIOR_RIDGE_SIMPLICES, MAX_INTERIOR_SIMPLICES {
$this->COCIRCUIT_EQUATIONS = cocircuit_equations($this->COMBINATORIAL_DIM, $this->RAYS, $this->RAYS_IN_FACETS, $this->INTERIOR_RIDGE_SIMPLICES, $this->MAX_INTERIOR_SIMPLICES);
}
# @category Combinatorics
# A matrix whose rows contain the cocircuit equations of a cone C
# symmetries of the cone are NOT taken into account
rule FOLDABLE_COCIRCUIT_EQUATIONS : COMBINATORIAL_DIM, RAYS, RAYS_IN_FACETS, INTERIOR_RIDGE_SIMPLICES, MAX_INTERIOR_SIMPLICES {
$this->FOLDABLE_COCIRCUIT_EQUATIONS = foldable_cocircuit_equations($this->COMBINATORIAL_DIM, $this->RAYS, $this->RAYS_IN_FACETS, $this->INTERIOR_RIDGE_SIMPLICES, $this->MAX_INTERIOR_SIMPLICES);
}
# @category Combinatorics
# The vertex degrees add up to twice the number of edges.
rule EXCESS_RAY_DEGREE : N_RAYS, GRAPH.N_EDGES, CONE_DIM {
$this->EXCESS_RAY_DEGREE = 2 * $this->GRAPH->N_EDGES - $this->N_VERTICES * ($this->CONE_DIM-1);
}
# @category Combinatorics
# The vertex degrees add up to twice the number of edges.
rule EXCESS_FACET_DEGREE : N_FACETS, DUAL_GRAPH.N_EDGES, CONE_DIM {
$this->EXCESS_FACET_DEGREE = 2 * $this->DUAL_GRAPH->N_EDGES - $this->N_FACETS * ($this->CONE_DIM-1);
}
# @category Geometry
# returns the dimension of the ambient space of the cone
# @return Int
user_method AMBIENT_DIM() : CONE_AMBIENT_DIM {
my ($self)=@_;
return $self->CONE_AMBIENT_DIM;
}
# @category Geometry
# returns the geometric dimension of the cone (including the lineality space)
# for the dimension of the pointed part ask for [[COMBINATORIAL_DIM]]
# @return Int
user_method DIM {
my ($self)=@_;
if (!defined ($self->lookup("LINEALITY_SPACE | INPUT_LINEALITY | INPUT_RAYS | RAYS | INEQUALITIES | EQUATIONS | FACETS | LINEAR_SPAN"))) {
return $self->COMBINATORIAL_DIM;
}
return $self->CONE_DIM;
}
# @category Geometry
# checks whether a given cone is containeed in another
# @param Cone<Scalar> C_in
# @return Bool
user_method contains(Cone){
my ($self, $C_in)=@_;
return cone_contains($C_in, $self);
}
# @category Geometry
# checks whether a given point is contained in a cone
# @param Vector<Scalar> v point
# @return Bool
user_method contains (Vector) {
my ($self,$v)=@_;
my $zero = 0;
# check if $v is zero
foreach (@{$v}){
if ( $_ != $zero ) {
return cone_contains(new Cone<Scalar>(INPUT_RAYS=>[$v]), $self);
}
}
# 0 is in any cone
return true;
}
# @category Geometry
# checks whether a given point is contained in the strict interior of a cone
# @param Vector<Scalar> v point
# @return Bool
user_method contains_in_interior {
my ($self,$v)=@_;
if (defined (my $f=$self->lookup("FACETS | INEQUALITIES"))) {
if (defined (my $ah=$self->lookup("LINEAR_SPAN | INPUT_LINEALITY")) ) {
if ( $ah->rows ) {
my $b=$ah*$v;
foreach (@{$b}) { if ( $_ != 0 ) { return false; } }
}
}
my $b=$f*$v;
foreach (@{$b}) { if ( $_ <= 0 ) { return false; } }
return true;
}else {
return cone_contains_point($self,$v,in_interior=>1);
}
}
# @category Combinatorics
# The interior //d//-dimensional simplices of a cone of combinatorial dimension //d//
# symmetries of the cone are NOT taken into account
rule MAX_INTERIOR_SIMPLICES : COMBINATORIAL_DIM, RAYS, RAYS_IN_FACETS {
$this->MAX_INTERIOR_SIMPLICES = max_interior_simplices($this);
}
# @category Combinatorics
# The interior //d-1//-dimensional simplices of a cone of combinatorial dimension //d//
# symmetries of the cone are NOT taken into account
rule INTERIOR_RIDGE_SIMPLICES, MAX_BOUNDARY_SIMPLICES : COMBINATORIAL_DIM, RAYS, RAYS_IN_FACETS {
my $pair=interior_and_boundary_ridges($this);
$this->INTERIOR_RIDGE_SIMPLICES = $pair->first;
$this->MAX_BOUNDARY_SIMPLICES = $pair->second;
}
# @category Combinatorics
# A matrix whose rows contain the cocircuit equations of a cone C
# symmetries of the cone are NOT taken into account
rule COCIRCUIT_EQUATIONS : COMBINATORIAL_DIM, RAYS, RAYS_IN_FACETS, INTERIOR_RIDGE_SIMPLICES, MAX_INTERIOR_SIMPLICES {
$this->COCIRCUIT_EQUATIONS = cocircuit_equations($this->COMBINATORIAL_DIM, $this->RAYS, $this->RAYS_IN_FACETS, $this->INTERIOR_RIDGE_SIMPLICES, $this->MAX_INTERIOR_SIMPLICES);
}
} # end object Cone
# @category Triangulations, subdivisions and volume
# Create a simplicial complex as a barycentric subdivision of a given cone or polytope.
# Each vertex in the new complex corresponds to a face in the old complex.
# @param Cone c input cone or polytope
# @option Bool no_labels Do not generate [[VERTEX_LABELS]] from the faces of the original cone. default: 0
# @option Bool geometric_realization create a [[topaz::GeometricSimplicialComplex]]; default is true
# @return topaz::SimplicialComplex
user_function barycentric_subdivision<Scalar>(Cone<Scalar> { no_labels=>0, pin_hasse_section=>"HASSE_DIAGRAM", label_section=>"RAY_LABELS", geometric_realization=>1, coord_section=>"RAYS", ignore_top_node=>0 }) {
topaz::barycentric_subdivision_impl<BasicDecoration,Sequential,Scalar>(@_);
}
# @category Triangulations, subdivisions and volume
# Create a simplicial complex as an iterated barycentric subdivision of a given cone or polytope.
# @param Cone c input cone or polytope
# @param Int n how many times to subdivide
# @option Bool no_labels Do not generate [[VERTEX_LABELS]] from the faces of the original cone. default: 0
# @option Bool geometric_realization create a [[topaz::GeometricSimplicialComplex]]; default is false
# @return topaz::SimplicialComplex
user_function iterated_barycentric_subdivision<Scalar>(Cone<Scalar> $ { no_labels=>0, ignore_top_node=>0, pin_hasse_section=>"HASSE_DIAGRAM", label_section=>"VERTEX_LABELS", pout_section=>"TRIANGULATION.FACETS", geometric_realization=>0, coord_section=>"RAYS" }) {
topaz::iterated_barycentric_subdivision_impl<BasicDecoration,Sequential,Scalar>(@_);
}
# @category Other
# @param Matrix M
# Create the Lawrence matrix $ Lambda(M) $ corresponding to M.
# If //M// has //n// rows and //d// columns, then Lambda(M) equals
# ( //M// //I_n// )
# ( //0_{n,d}// //I_n// ).
# @return Matrix
user_function lawrence_matrix<Scalar>(Matrix<Scalar>) {
my $m = shift;
my $n = $m->rows();
my $d = $m->cols();
my $m1 = $m | unit_matrix<Scalar>($n);
my $m2 = ones_vector<Scalar>($n) | zero_matrix<Scalar>($n,$d-1) | unit_matrix<Scalar>($n);
return $m1/$m2;
}
# @category Producing a polytope from polytopes
# Create the Lawrence polytope $ Lambda(P) $ corresponding to P.
# $ Lambda(P) $ has the property that
# $ Gale( Lambda(P) ) = Gale(P) union -Gale(P) $.
# @param Cone P an input cone or polytope
# @return Cone the Lawrence cone or polytope to P
user_function lawrence<Scalar>(Cone<Scalar>) {
my $p = shift;
return new Polytope<Scalar>(VERTICES=>lawrence_matrix($p->VERTICES));
}
# @category Triangulations, subdivisions and volume
# Find the maximal interior simplices of a polytope P.
# Symmetries of P are NOT taken into account.
# @param Polytope P the input polytope
# @return Array<Set>
# @example
# > print max_interior_simplices(cube(2));
# | {0 1 2}
# | {0 1 3}
# | {0 2 3}
# | {1 2 3}
user_function max_interior_simplices<Scalar>(Cone<Scalar>) {
max_interior_simplices_impl<Scalar>(@_);
}
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|