1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
function equal_up_to_row_permutation(Matrix, Matrix; $=false) {
defined(find_matrix_row_permutation(@_))
}
# @topic objects/Cone/specializations/Cone<Rational>
# An affine rational cone realized in R<sup>d</sup>.
# @topic objects/Cone/specializations/Cone<Float>
# An affine cone with float coordinates realized in R<sup>d</sup>.
object Cone {
file_suffix cone
# rules only intended for cones and not for polytopes should have this label
label cone_only
method lookup_ambient_dim($) {
my ($self, $d) = @_;
if (!defined($d)) {
foreach (qw(RAYS INPUT_RAYS LINEALITY_SPACE INPUT_LINEALITY INEQUALITIES FACETS EQUATIONS LINEAR_SPAN COORDINATE_LABELS)) {
my $M;
if (defined ($M = $self->lookup($_)) && $M->cols() > 0) {
$d = $M->cols();
last;
}
}
}
$d;
}
# @category Input property
# (Non-homogenous) vectors whose linear span defines a subset of the lineality space of the cone;
# redundancies are allowed. All vectors in the input must be non-zero.
# Dual to [[EQUATIONS]].
#
# Input section only. Ask for [[LINEALITY_SPACE]] if
# you want to compute a V-representation from an H-representation.
property INPUT_LINEALITY : Matrix<Scalar> {
sub canonical { &canonicalize_rays; }
}
# @category Input property
# (Non-homogenous) vectors whose positive span form the cone; redundancies are allowed.
# Dual to [[INEQUALITIES]]. All vectors in the input must be non-zero.
#
# Input section only. Ask for [[RAYS]] if you want to compute a V-representation from an H-representation.
property INPUT_RAYS : Matrix<Scalar> {
method canonical {
my ($this,$M)=@_;
canonicalize_rays($M);
if ($this->isa("Polytope")) {
canonicalize_polytope_generators($M);
}
}
sub equal {
equal_up_to_row_permutation(@_, true);
}
}
# @category Geometry
# The number of [[INPUT_RAYS]].
property N_INPUT_RAYS : Int;
# @category Geometry
# The number of [[INPUT_LINEALITY]].
property N_INPUT_LINEALITY : Int;
# @category Geometry
# The dimension of the space in which the cone lives.
property CONE_AMBIENT_DIM : Int;
# @category Combinatorics
# Combinatorial dimension
# This is the dimension all combinatorial properties of the cone
# like e.g. [[RAYS_IN_FACETS]] or the [[HASSE_DIAGRAM]] refer to.
#
# Geometrically, the combinatorial dimension is the dimension
# of the intersection of the pointed part of the cone
# with a hyperplane that creates a bounded intersection.
property COMBINATORIAL_DIM : Int;
# @category Combinatorics
# Let M be the vertex-facet incidence matrix, then the Altshuler determinant is
# defined as max{det(M ∗ M<sup>T</sup>), det(M<sup>T</sup> ∗ M)}.
# @example This prints the Altshuler determinant of the built-in pentagonal pyramid (Johnson solid 2):
# > print johnson_solid("pentagonal_pyramid")->ALTSHULER_DET;
# | 25
property ALTSHULER_DET : Integer;
# @category Geometry
# True if the cone does not contain a non-trivial linear subspace.
property POINTED : Bool;
# @category Geometry
# True if the only valid point in the cone is the unique non-sensical point (0,...,0)
property TRIVIAL : Bool;
# @category Geometry
# A ray of a pointed cone.
property ONE_RAY : Vector<Scalar> {
sub canonical { &canonicalize_rays; }
}
# to be overloaded in special cases like Scalar==Float
sub prepare_computations { undef }
# @category Geometry
# Rays of the cone. No redundancies are allowed.
# All vectors in this section must be non-zero.
# The property [[RAYS]] appears only in conjunction with the property [[LINEALITY_SPACE]].
# The specification of the property [[RAYS]] requires the specification of [[LINEALITY_SPACE]], and vice versa.
property RAYS : Matrix<Scalar> {
sub canonical { &canonicalize_rays; }
}
# @category Geometry
# Basis of the linear subspace orthogonal to all [[INEQUALITIES]] and [[EQUATIONS]]
# All vectors in this section must be non-zero.
# The property [[LINEALITY_SPACE]] appears only in conjunction with the property [[RAYS]], or [[VERTICES]], respectively.
# The specification of the property [[RAYS]] or [[VERTICES]] requires the specification of [[LINEALITY_SPACE]], and vice versa.
property LINEALITY_SPACE : Matrix<Scalar> {
sub canonical {
if ($_[0]->isa("Polytope")) {
&orthogonalize_affine_subspace;
} else {
&orthogonalize_subspace;
}
}
method equal {
my ($this,$M1,$M2)=@_;
$this->prepare_computations;
equal_bases($M1,$M2);
}
}
# @category Geometry
# Dimension of the [[LINEALITY_SPACE]] (>0 in the non-POINTED case)
property LINEALITY_DIM : Int;
# permuting the [[RAYS]]
# TODO: rename into RaysPerm and introduce an overriding alias in Polytope
permutation VertexPerm : PermBase;
rule VertexPerm.PERMUTATION : VertexPerm.RAYS, RAYS, LINEALITY_SPACE {
my $cmp = $this->prepare_computations;
$this->VertexPerm->PERMUTATION = find_representation_permutation($this->VertexPerm->RAYS, $this->RAYS, $this->LINEALITY_SPACE, 0)
// die "no permutation";
}
rule RAYS : VertexPerm.RAYS, VertexPerm.PERMUTATION {
$this->RAYS = permuted_rows($this->VertexPerm->RAYS, $this->VertexPerm->PERMUTATION);
}
weight 1.10;
# @category Combinatorics
# The number of [[RAYS]]
property N_RAYS : Int;
# @category Combinatorics
# The number of [[FACETS]].
property N_FACETS : Int;
# @category Combinatorics
# The number of ridges (faces of codimension 2)
# equals the number of edges of the [[DUAL_GRAPH]]
property N_RIDGES : Int;
# @category Combinatorics
# The number of edges of the [[GRAPH]]
property N_EDGES : Int;
# @category Input property
# Inequalities giving rise to the cone; redundancies are allowed.
# All vectors in this section must be non-zero.
# Dual to [[INPUT_RAYS]].
#
# Input section only. Ask for [[FACETS]] if you want to compute an H-representation from a V-representation.
property INEQUALITIES : Matrix<Scalar> {
method canonical {
my $self=shift;
$self->canonical_ineq(@_);
}
sub equal {
equal_up_to_row_permutation(@_, true);
}
}
# To be overloaded in derived classes
sub canonical_ineq { }
# @category Geometry
# Dual basis of the linear span of the cone.
# All vectors in this section must be non-zero.
# The property [[LINEAR_SPAN]] appears only in conjunction with the property [[FACETS]].
# The specification of the property [[FACETS]] requires the specification of [[LINEAR_SPAN]],
# or [[AFFINE_HULL]], respectively, and vice versa.
property LINEAR_SPAN : Matrix<Scalar> {
sub canonical { &orthogonalize_subspace; }
method equal {
my ($this,$M1,$M2)=@_;
$this->prepare_computations;
equal_bases($M1,$M2);
}
}
# @category Geometry
# Facets of the cone, encoded as inequalities.
# All vectors in this section must be non-zero.
# Dual to [[RAYS]].
# This section is empty if and only if the cone is trivial (e.g. if it encodes an empty polytope).
# Notice that a polytope which is a single point defines a one-dimensional cone, the face at infinity is a facet.
# The property [[FACETS]] appears only in conjunction with the property [[LINEAR_SPAN]], or [[AFFINE_HULL]], respectively.
# The specification of the property [[FACETS]] requires the specification of [[LINEAR_SPAN]],
# or [[AFFINE_HULL]], respectively, and vice versa.
property FACETS : Matrix<Scalar>;
# permuting the [[FACETS]]
permutation FacetPerm : PermBase;
rule FacetPerm.PERMUTATION : FacetPerm.FACETS, FACETS, LINEAR_SPAN {
my $cmp = $this->prepare_computations;
$this->FacetPerm->PERMUTATION = find_representation_permutation($this->FacetPerm->FACETS, $this->FACETS, $this->LINEAR_SPAN, 1)
// die "no permutation";
}
rule FacetPerm.LINEAR_SPAN = LINEAR_SPAN;
rule FACETS : FacetPerm.FACETS, FacetPerm.PERMUTATION {
$this->FACETS = permuted_rows($this->FacetPerm->FACETS, $this->FacetPerm->PERMUTATION);
}
weight 1.10;
# @category Geometry
# The i-th row is the normal vector of a hyperplane separating the i-th vertex from the others.
# This property is a by-product of redundant point elimination algorithm.
property RAY_SEPARATORS : Matrix<Scalar>;
rule RAY_SEPARATORS : VertexPerm.RAY_SEPARATORS, VertexPerm.PERMUTATION {
$this->RAY_SEPARATORS=permuted_rows($this->VertexPerm->RAY_SEPARATORS, $this->VertexPerm->PERMUTATION);
}
weight 1.10;
# @category Input property
# Equations that hold for all [[INPUT_RAYS]] of the cone.
# All vectors in this section must be non-zero.
#
# Input section only. Ask for [[LINEAR_SPAN]] if you want to see an irredundant description of the linear span.
property EQUATIONS : Matrix<Scalar>;
# @category Geometry
# The number of [[EQUATIONS]].
property N_EQUATIONS : Int;
# @category Geometry
# Dimension of the linear span of the cone = dimension of the cone.
# If the cone is given purely combinatorially, this is the dimension of a minimal embedding space
# deduced from the combinatorial structure.
property CONE_DIM : Int;
# @category Geometry
# [[CONE_AMBIENT_DIM]] and [[CONE_DIM]] coincide. Notice that this makes sense also for the derived Polytope class.
property FULL_DIM : Bool;
# @category Geometry
# A point in the relative interior of the cone.
property REL_INT_POINT : Vector<Scalar>;
# @category Geometry
# True if all [[RAYS]] of the cone have non-negative coordinates,
# that is, if the pointed part of the cone lies entirely in the positive orthant.
property POSITIVE : Bool;
# @category Combinatorics
# Number of pairs of incident vertices and facets.
property N_RAY_FACET_INC : Int;
# @category Combinatorics
# Ray-facet incidence matrix, with rows corresponding to facets and columns
# to rays. Rays and facets are numbered from 0 to [[N_RAYS]]-1 rsp.
# [[N_FACETS]]-1, according to their order in [[RAYS]] rsp. [[FACETS]].
property RAYS_IN_FACETS : IncidenceMatrix;
rule RAYS_IN_FACETS : VertexPerm.RAYS_IN_FACETS, VertexPerm.PERMUTATION {
$this->RAYS_IN_FACETS=permuted_cols($this->VertexPerm->RAYS_IN_FACETS, $this->VertexPerm->PERMUTATION);
}
weight 1.20;
rule RAYS_IN_FACETS : FacetPerm.RAYS_IN_FACETS, FacetPerm.PERMUTATION {
$this->RAYS_IN_FACETS=permuted_rows($this->FacetPerm->RAYS_IN_FACETS, $this->FacetPerm->PERMUTATION);
}
weight 1.20;
# @category Combinatorics
# Ray-ridge incidence matrix, with rows corresponding to ridges and columns
# to rays. Rays and ridges are numbered from 0 to [[N_RAYS]]-1 rsp.
# [[N_RIDGES]]-1, according to their order in [[RAYS]] rsp. [[RIDGES]].
property RAYS_IN_RIDGES : IncidenceMatrix;
# @category Geometry
# [[INPUT_RAYS|Input ray]]-[[FACETS|facet]] incidence matrix, with rows corresponding to [[FACETS|facet]] and columns
# to [[INPUT_RAYS|input rays]]. Input_rays and facets are numbered from 0 to [[N_INPUT_RAYS]]-1 rsp.
# [[N_FACETS]]-1, according to their order in [[INPUT_RAYS]]
# rsp. [[FACETS]].
property INPUT_RAYS_IN_FACETS : IncidenceMatrix;
# @notest Rule defined "in stock" - currently without use
rule INPUT_RAYS_IN_FACETS : FacetPerm.INPUT_RAYS_IN_FACETS, FacetPerm.PERMUTATION {
$this->INPUT_RAYS_IN_FACETS=permuted_rows($this->FacetPerm->INPUT_RAYS_IN_FACETS, $this->FacetPerm->PERMUTATION);
}
weight 1.20;
# @category Combinatorics
# Transposed to [[RAYS_IN_FACETS]].
# Notice that this is a temporary property; it will not be stored in any file.
property FACETS_THRU_RAYS : IncidenceMatrix;
rule FACETS_THRU_RAYS : RAYS_IN_FACETS{
$this->FACETS_THRU_RAYS(temporary)=transpose($this->RAYS_IN_FACETS);
}
# this rule is needed. Otherwise a polytope only defined by FACETS_THRU_RAYS
# is not able to compute anything else
rule RAYS_IN_FACETS : FACETS_THRU_RAYS{
$this->RAYS_IN_FACETS(temporary)=transpose($this->FACETS_THRU_RAYS);
}
# @category Geometry
# Transposed to [[INPUT_RAYS_IN_FACETS]].
# Notice that this is a temporary property; it will not be stored in any file.
property FACETS_THRU_INPUT_RAYS : IncidenceMatrix;
rule FACETS_THRU_INPUT_RAYS : INPUT_RAYS_IN_FACETS{
$this->FACETS_THRU_INPUT_RAYS(temporary)=transpose($this->INPUT_RAYS_IN_FACETS);
}
# @category Geometry
# Ray-inequality incidence matrix, with rows corresponding to facets and columns
# to rays. Rays and inequalities are numbered from 0 to [[N_RAYS]]-1 rsp.
# number of [[INEQUALITIES]]-1, according to their order in [[RAYS]]
# rsp. [[INEQUALITIES]].
property RAYS_IN_INEQUALITIES : IncidenceMatrix;
# @notest Rule defined "in stock" - currently without use
rule RAYS_IN_INEQUALITIES : VertexPerm.RAYS_IN_INEQUALITIES, VertexPerm.PERMUTATION {
$this->RAYS_IN_INEQUALITIES=permuted_cols($this->VertexPerm->RAYS_IN_INEQUALITIES, $this->VertexPerm->PERMUTATION);
}
weight 1.20;
# @category Geometry
# transposed [[RAYS_IN_INEQUALITIES]]
# Notice that this is a temporary property; it will not be stored in any file.
property INEQUALITIES_THRU_RAYS : IncidenceMatrix;
rule INEQUALITIES_THRU_RAYS : RAYS_IN_INEQUALITIES{
$this->INEQUALITIES_THRU_RAYS(temporary)=transpose($this->RAYS_IN_INEQUALITIES);
}
# @category Combinatorics
# The face lattice of the cone organized as a directed graph.
# Top and bottom nodes represent the whole cone and the empty face.
# Every other node corresponds to some proper face of the cone.
property HASSE_DIAGRAM : Lattice<BasicDecoration, Sequential> {
method get_shift() {
my $this = shift;
return $this->parent->isa("polytope::Polytope") ? 1 : 0;
}
# @category Combinatorics
# The dimension of the underlying object
# @return Int
user_method dim {
my $this = shift;
return $this->rank() - $this->get_shift();
}
# @category Combinatorics
# The indices of nodes in the [[HASSE_DIAGRAM]] corresponding to faces of dimension d in the underlying object
# @param Int d dimension
# @return Set<Int>
user_method nodes_of_dim($) {
my ($this,$d) = @_;
return $this->nodes_of_rank($d + $this->get_shift());
}
# @category Combinatorics
# The indices of nodes in the [[HASSE_DIAGRAM]] corresponding to faces with dimension in the range (d1,d2) in the underlying object
# @param Int d1 lower dimension of the range
# @param Int d2 upper dimension of the range
# @return Set<Int>
user_method nodes_of_dim_range($,$) {
my ($this,$d1,$d2) = @_;
my $st = $this->get_shift();
return shift->nodes_of_rank_range($d1+$st,$d2+$st);
}
}
# @category Combinatorics
# Output the faces of a given dimension
# @param Int d dimension
# @return Array<Set<Int>>
user_method faces_of_dim($) {
my ($this, $d) = @_;
# using DIM here works similar to the get_shift in the hasse diagram above
# to adjust for the dimension difference between cone and polytope (for the input dimension)
if ($d == $this->DIM - $this->LINEALITY_DIM - 1) {
return new Array<Set<Int>>(rows($this->RAYS_IN_FACETS));
}
return new Array<Set<Int>>([map { $this->HASSE_DIAGRAM->FACES->[$_] } @{$this->HASSE_DIAGRAM->nodes_of_dim($d)}]);
}
# @category Combinatorics
# Number of incident facets for each ray.
property RAY_SIZES : Array<Int>;
# @category Combinatorics
# Number of incident rays for each facet.
property FACET_SIZES : Array<Int>;
# @category Combinatorics
# Measures the deviation of the cone from being simple in terms of the [[GRAPH]].
property EXCESS_RAY_DEGREE : Int;
# @category Combinatorics
# Measures the deviation of the cone from being simple in terms of the [[DUAL_GRAPH]].
property EXCESS_FACET_DEGREE : Int;
# @category Combinatorics
# Vertex-edge graph obtained by intersecting the cone with a transversal hyperplane.
property GRAPH : Graph;
rule GRAPH.NodePerm.PERMUTATION = VertexPerm.PERMUTATION;
# @category Combinatorics
# Facet-ridge graph. Dual to [[GRAPH]].
property DUAL_GRAPH : Graph;
rule DUAL_GRAPH.NodePerm.PERMUTATION = FacetPerm.PERMUTATION;
# @category Combinatorics
# The vector counting the number of faces (`f<sub>k</sub>` is the number of `(k+1)`-faces).
property F_VECTOR : Vector<Integer>;
# @category Combinatorics
# The vector counting the number of incidences between pairs of faces.
# `f<sub>ik</sub>` is the number of incident pairs of `(i+1)`-faces and `(k+1)`-faces.
# The main diagonal contains the [[F_VECTOR]].
property F2_VECTOR : Matrix<Integer>;
# @category Combinatorics
# All intermediate polytopes (with respect to the given insertion order) in the beneath-and-beyond algorithm are simplicial.
# We have the implications: [[RAYS]] in general position => ESSENTIALLY_GENERIC => [[SIMPLICIAL]]
property ESSENTIALLY_GENERIC : Bool;
# @category Triangulation and volume
# Some triangulation of the cone using only its [[RAYS]].
property TRIANGULATION : topaz::GeometricSimplicialComplex<Scalar> : multiple {
# @category Combinatorics
# The splits that are coarsenings of the current [[TRIANGULATION]].
# If the triangulation is regular these form the unique split decomposition of
# the corresponding weight function.
property REFINED_SPLITS : Set<Int>;
# @category Geometry
# Checks regularity of [[TRIANGULATION]].
property REGULAR : Bool;
# @category Geometry
# Weight vector to construct a regular [[TRIANGULATION]].
# Must be generic.
property WEIGHTS : Vector<Scalar>;
property BOUNDARY {
# For each facet the set of simplex indices of [[BOUNDARY]] that triangulate it.
property FACET_TRIANGULATIONS : Array<Set>;
}
}
rule TRIANGULATION(any).VertexPerm.PERMUTATION = VertexPerm.PERMUTATION;
rule TRIANGULATION.BOUNDARY.FACET_TRIANGULATIONS : FacetPerm.TRIANGULATION.BOUNDARY.FACET_TRIANGULATIONS, FacetPerm.PERMUTATION {
$this->TRIANGULATION->BOUNDARY->FACET_TRIANGULATIONS=permuted($this->FacetPerm->TRIANGULATION->BOUNDARY->FACET_TRIANGULATIONS, $this->FacetPerm->PERMUTATION);
}
weight 1.10;
# @category Combinatorics
# True if the facets of the cone are simplicial.
property SIMPLICIAL : Bool;
# @category Combinatorics
# True if the cone is simplicial.
property SIMPLICIAL_CONE : Bool;
# @category Triangulation and volume
# Conceptually, similar to [[TRIANGULATION]], but using [[INPUT_RAYS]].
# However, here we use a small object type. The main reason for the existence of this property
# (in this form) is the [[beneath_beyond]] algorithm, which automatically produces this data as
# a by-product of the conversion from [[INPUT_RAYS]] to [[FACETS]]. And that data is too valuable
# to throw away. Use big objects of type [[VectorConfiguration]] if you want to work with
# triangulations using redundant points.
property TRIANGULATION_INT : Array<Set>;
# @category Combinatorics
# The interior //d//-dimensional simplices of a cone of combinatorial dimension //d//
property MAX_INTERIOR_SIMPLICES : Array<Set>;
# @category Combinatorics
# The boundary (//d//-1)-dimensional simplices of a cone of combinatorial dimension //d//
property MAX_BOUNDARY_SIMPLICES : Array<Set>;
# @category Combinatorics
# The (//d//-1)-dimensional simplices in the interior.
property INTERIOR_RIDGE_SIMPLICES : Array<Set>;
# @category Combinatorics
# A matrix whose rows contain the cocircuit equations of P. The columns correspond to the [[MAX_INTERIOR_SIMPLICES]].
property COCIRCUIT_EQUATIONS : SparseMatrix;
# @category Combinatorics
# A matrix whose rows contain the foldable cocircuit equations of P. The columns correspond to 2 * [[MAX_INTERIOR_SIMPLICES]].
# col 0 = 0, col 1 = first simplex (black copy), col 2 = first simplex (white copy), col 3 = second simplex (black copy), ...
property FOLDABLE_COCIRCUIT_EQUATIONS : SparseMatrix;
# @category Combinatorics
# True if the facets of the cone are simple. Dual to [[SIMPLICIAL]].
property SIMPLE : Bool;
# @category Combinatorics
# True if the cone is self-dual.
property SELF_DUAL : Bool;
# @category Visualization
# Unique names assigned to the [[RAYS]].
# If specified, they are shown by visualization tools instead of ray indices.
#
# For a cone built from scratch, you should create this property by yourself,
# either manually in a text editor, or with a client program. If you build a cone with a construction client
# taking some other input cone(s), you can create the labels automatically if you
# call the client with a //relabel// option. The exact format of the labels is dependent on the
# construction, and is described by the corresponding client.
property RAY_LABELS : Array<String> : mutable;
rule RAY_LABELS : VertexPerm.RAY_LABELS, VertexPerm.PERMUTATION {
$this->RAY_LABELS=permuted($this->VertexPerm->RAY_LABELS, $this->VertexPerm->PERMUTATION);
}
weight 1.10;
# @category Visualization
# Unique names assigned to the [[INPUT_RAYS]], analogous to [[RAY_LABELS]].
property INPUT_RAY_LABELS : Array<String> : mutable;
# @category Visualization
# Unique names assigned to the [[FACETS]], analogous to [[RAY_LABELS]].
property FACET_LABELS : Array<String> : mutable;
rule FACET_LABELS : FacetPerm.FACET_LABELS, FacetPerm.PERMUTATION {
$this->FACET_LABELS=permuted($this->FacetPerm->FACET_LABELS, $this->FacetPerm->PERMUTATION);
}
weight 1.10;
# @category Visualization
# Print [[RAYS_IN_FACETS]] using [[RAY_LABELS]]
property LABELED_FACETS : Array<String>;
rule LABELED_FACETS : N_RAYS, RAYS_IN_FACETS {
my $facets = $this->RAYS_IN_FACETS;
my $labels = new Array<String>;
if (defined (my $vertex_labels = $this->lookup("VERTEX_LABELS"))) {
$labels = $vertex_labels;
} else {
$labels = new Array<String>(map { "$_" } (0..$this->N_RAYS-1));
}
$this->LABELED_FACETS(temporary) = labeled_output($labels, $facets, $facets->rows);
}
weight 1.10;
# @category Visualization
# Unique names assigned to the [[INEQUALITIES]], analogous to [[RAY_LABELS]].
property INEQUALITY_LABELS : Array<String> : mutable;
# @category Visualization
# Unique names assigned to the coordinate directions, analogous to [[RAY_LABELS]].
# For Polytopes this should contain "inhomog_var" for the homogenization coordinate and this will
# be added automatically if necessary and [[CONE_AMBIENT_DIM]] can be computed.
property COORDINATE_LABELS : Array<String> : mutable {
method canonical {
my ($this,$A)=@_;
my $d = $this->lookup_ambient_dim($this->lookup("CONE_AMBIENT_DIM"));
# only do the check if we were able to determine the ambient dimension
if (defined($d) && $d != $A->size) {
if ($this->isa("Polytope") and $A->size+1 == $d) {
warn "automatically prepending inhomog_var to COORDINATE_LABELS" if ($DebugLevel);
# we need to rewrite the reference in @_ here to modify the property
$_[1] = new Array<String>(["inhomog_var",@$A]);
} else {
die "COORDINATE_LABLES: Wrong number of variables!";
}
}
}
}
# @category Visualization
# Reordered [[RAYS_IN_FACETS]] for 2d and 3d-cones.
# Rays are listed in the order of their appearance
# when traversing the facet border counterclockwise seen from outside of the origin.
property RIF_CYCLIC_NORMAL : Array<Array<Int>>;
# @category Visualization
# Reordered [[DUAL_GRAPH]] for 3d-cones.
# The neighbor facets are listed in the order corresponding to [[RIF_CYCLIC_NORMAL]],
# so that the first two vertices in RIF_CYCLIC_NORMAL make up the ridge to the first neighbor
# facet and so on.
property NEIGHBOR_FACETS_CYCLIC_NORMAL : Array<Array<Int>>;
# @category Visualization
# Reordered transposed [[RAYS_IN_FACETS]]. Dual to [[RIF_CYCLIC_NORMAL]].
property FTR_CYCLIC_NORMAL : Array<Array<Int>>;
# @category Visualization
# Reordered [[GRAPH]]. Dual to [[NEIGHBOR_FACETS_CYCLIC_NORMAL]].
property NEIGHBOR_RAYS_CYCLIC_NORMAL : Array<Array<Int>>;
}
# @category Coordinate conversions
# Creates a new Cone object with different coordinate type
# target coordinate type //Coord// must be specified in angle brackets
# e.g. $new_cone = convert_to<Coord>($cone)
# @tparam Coord target coordinate type
# @param Cone c the input cone
# @return Cone<Coord> a new cone object or //C// itself it has the requested type
user_function convert_to<Coord>(Cone) {
if ($_[0]->type->params->[0] == typeof Coord) {
$_[0]
} else {
new Cone<Coord>($_[0]);
}
}
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|