1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
CREDIT latte
LattE (Lattice point Enumeration) is a computer software dedicated to the
problems of counting lattice points and integration inside convex polytopes.
Copyright by Matthias Koeppe, Jesus A. De Loera and others.
http://www.math.ucdavis.edu/~latte/
# path to the LattE binaries
custom $latte_count;
CONFIGURE {
find_program($latte_count, "count", {
prompt => "the program `count' from the LattE package",
check => sub { `$_[0] 2>&1` !~ /LattE/ && "this is not LattE's count" }
}) or return;
`$latte_count 2>&1` =~ /LattE/ or die <<".";
'$latte_count' is not the count binary from LattE.
.
}
# additional parameters for calling LattE's "count". See the manual of LattE for details, recommended options are
# "--irrational-all-primal": use irrational decomposition instead of polarization
# "--maxdet=<n>": stop triangulating if determinant of cone < n (needs LiDIA)
# "--exponential": use exponential substitution for evaluating the generating function
custom $latte_count_param="";
# additional parameters for calling latte's "count --ehrhart-polynomial"
# see $latte_count_param for details
custom $latte_ehrhart_param="";
# @category Lattice points in polytopes
# Use [[wiki:external_software#latte|LattE]] for counting and detecting lattice points inside convex polytopes.
label latte
sub write_latte_ineq {
my ($this, $tempname, $int)=@_;
# daten: ineq / eq
my $ineq = $this->give("FACETS | INEQUALITIES");
my $n_ineq = $ineq->rows;
my $fac = dense(eliminate_denominators_in_rows($ineq));
my $n_lines = $n_ineq;
my $ah;
if (defined (my $AH = $this->lookup("AFFINE_HULL | EQUATIONS"))) {
$n_lines = $n_lines + $AH->rows;
$ah = dense(eliminate_denominators_in_rows($AH));
}
open(my $P, ">$tempname")
or die "can't create temporary file $tempname: $!";
#header
print $P $n_lines, " ", $this->CONE_AMBIENT_DIM, "\n";
# facet lines
if ($int) {
$fac *= $this->CONE_DIM;
for (my $i=0; $i<$fac->rows; $i++) {
$fac->elem($i,0) -= 1;
}
}
print $P $fac;
# affine hull lines
if ($n_lines > $n_ineq) {
print $P $ah;
print $P "linearity ", $n_lines-$n_ineq, " ";
print $P ++$n_ineq," " while $n_ineq < $n_lines;
print $P "\n";
}
close $P;
}
sub write_latte_vertices {
my ($this, $tempname)=@_;
my $vert = dense($this->VERTICES);
open(my $P, ">$tempname")
or die "can't create temporary file $tempname: $!";
print $P $vert->rows, " ", ($this->CONE_AMBIENT_DIM), "\n";
print $P $vert;
close $P;
}
sub parse_latte_points {
my $P = shift;
local $_;
while (<$P>) {
if (my ($n)=/number of lattice points\D+(\d+)/) {
close $P;
return $n;
} elsif(/Empty polytope/ or /The polytope is empty!/) {
close $P;
return 0;
}
}
close $P;
die "can't parse output from LattE's 'count'\n";
}
object Polytope<Rational> {
rule latte.integer_points: N_LATTICE_POINTS : CONE_AMBIENT_DIM, CONE_DIM, FACETS | INEQUALITIES {
my $temp_dir=new Tempdir;
my $input_file="input.ine";
my $interior = 0;
write_latte_ineq($this, "$temp_dir/$input_file", $interior);
# latte 1.2 does not do a full redundancy check by default, so force it when using inequalities
# furthermore it might produce wrong output for 0-dim polytopes when given the far face inequality
my $check = "--redundancy-check=full-cddlib";
if (defined($this->lookup("FACETS")) && $this->CONE_DIM > 1) {
$check = "--redundancy-check=none";
}
my $tdir = new TempChangeDir($temp_dir);
if ($Verbose::external) {
dbg_print( "running latte's count: cd $temp_dir; $latte_count $check $latte_count_param $input_file" );
}
open my $P, "$latte_count $check $latte_count_param $input_file 2>&1 |"
or die "couldn't run LattE's 'count': $!";
$this->N_LATTICE_POINTS = parse_latte_points($P);
}
precondition : BOUNDED;
precondition : FEASIBLE;
weight 5.3;
rule latte.integer_points: N_LATTICE_POINTS : CONE_AMBIENT_DIM , VERTICES {
my $temp_dir=new Tempdir;
my $input_file="input.poi";
write_latte_vertices($this, "$temp_dir/$input_file");
my $tdir = new TempChangeDir($temp_dir);
if ($Verbose::external) {
dbg_print( "running latte's count: cd $temp_dir; $latte_count $latte_count_param vrep $input_file" );
}
open my $P, "$latte_count $latte_count_param vrep $input_file 2>&1 |"
or die "couldn't run LattE's 'count': $!";
$this->N_LATTICE_POINTS = parse_latte_points($P);
# FULL_DIM precodition because latte 1.2 fails for some non full-dim polytopes
}
precondition : BOUNDED;
precondition : FEASIBLE;
precondition : FULL_DIM;
weight 5.3;
# Read [[FACETS]], multiply with POLYTOPE_DIM+1 (or CONE_DIM, respectively!) and substract 1 from the first column.
# Call LattE's count on the polytope having this matrix as facet matrix.
rule latte.integer_points: N_INTERIOR_LATTICE_POINTS : CONE_AMBIENT_DIM, CONE_DIM, FACETS | INEQUALITIES {
my $temp_dir=new Tempdir;
my $input_file="input.ine";
my $interior = 1;
write_latte_ineq($this, "$temp_dir/$input_file", $interior);
# latte 1.2 does not do a full redundancy check by default, so force it when using inequalities
# furthermore it might produce wrong output for 0-dim polytopes when given the far face inequality
my $check = "--redundancy-check=full-cddlib";
if (defined($this->lookup("FACETS")) && $this->lookup("CONE_DIM") > 1) {
$check = "--redundancy-check=none";
}
my $tdir = new TempChangeDir($temp_dir);
if ($Verbose::external) {
dbg_print( "running latte's count: cd $temp_dir; $latte_count $check $latte_count_param $input_file" );
}
open my $P, "$latte_count $check $latte_count_param $input_file 2>&1 |"
or die "couldn't run LattE's 'count': $!";
$this->N_INTERIOR_LATTICE_POINTS = parse_latte_points($P);
}
weight 5.3;
precondition : BOUNDED;
precondition : FEASIBLE;
}
object_specialization Polytope::Lattice {
rule EHRHART_POLYNOMIAL : {
$this->EHRHART_POLYNOMIAL = new UniPolynomial<Rational>(1);
}
precondition : CONE_DIM { $this->CONE_DIM == 1 }
rule latte.ehrhartpoly: LATTICE, EHRHART_POLYNOMIAL : CONE_AMBIENT_DIM, FACETS | INEQUALITIES {
my $temp_dir=new Tempdir;
my $input_file="input.ine";
write_latte_ineq($this, "$temp_dir/$input_file");
my $tdir = new TempChangeDir($temp_dir);
if ($Verbose::external) {
dbg_print( "running latte's count: cd $temp_dir; $latte_count $latte_ehrhart_param --ehrhart-polynomial $input_file" );
}
open my $P, "$latte_count $latte_ehrhart_param --ehrhart-polynomial $input_file 2>&1 |"
or die "couldn't run LattE's 'count': $!";
local $_;
while (<$P>) {
if(/only implemented for integral polytopes/) {
$this->LATTICE = 0;
close $P;
return;
} elsif (/^Ehrhart polynomial: /) {
# parse: Ehrhart polynomial: + 1 * t^0 + 6 * t^1 + 12 * t^2 + 8 * t^3
# + 1 * t^0 + 8/3 * t^1 + 2 * t^2 + 4/3 * t^3
s/ //g;
my @list = m/\+?(-?\d+\/?\d*)\*t\^(\d+)/gc;
my $coeffs = new Vector<Rational>($list[-1]+1);
while (@list) {
$coeffs->[shift(@list)] = shift(@list);
}
my $exps = new Array<Int>(sequence(0,$coeffs->dim()));
$this->EHRHART_POLYNOMIAL = new UniPolynomial($coeffs,$exps);
$this->LATTICE=1;
close $P;
return;
} elsif (/^The number of lattice points is 1\./ || /Total number of lattice points: 1/) {
$this->LATTICE=1;
$this->EHRHART_POLYNOMIAL = new UniPolynomial<Rational>(1);
close $P;
return;
}
}
close $P;
die "could not parse output from latte";
}
weight 5.8;
precondition override : BOUNDED && FEASIBLE;
precondition : CONE_AMBIENT_DIM { $this->CONE_AMBIENT_DIM > 0 && $this->CONE_AMBIENT_DIM <= 100 } # upper limits for matrix dimension:
precondition : FACETS | INEQUALITIES { ($this->give("FACETS | INEQUALITIES"))->rows <= 50000 } # default values stored explicitly for cdd used by latte
precondition : CONE_DIM { $this->CONE_DIM > 1 } # latte does not like polytopes that only have a far facet
}
# Local Variables:
# mode: perl
# cperl-indent-level:4
# End:
|