File: milp_properties.rules

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (172 lines) | stat: -rw-r--r-- 7,614 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#  Copyright (c) 1997-2024
#  Ewgenij Gawrilow, Michael Joswig, and the polymake team
#  Technische Universität Berlin, Germany
#  https://polymake.org
#
#  This program is free software; you can redistribute it and/or modify it
#  under the terms of the GNU General Public License as published by the
#  Free Software Foundation; either version 2, or (at your option) any
#  later version: http://www.gnu.org/licenses/gpl.txt.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#-------------------------------------------------------------------------------

# @category Optimization
# A mixed integer linear program specified by a linear or abstract objective function
# @relates objects/Polytope
# @tparam Scalar numeric type of variables and objective function
declare object MixedIntegerLinearProgram<Scalar=Rational> {
   
   # Linear objective funtion. In d-space a linear objective function is given
   # by a (d+1)-vector.  The first coordinate specifies a constant that is
   # added to the resulting value.
   # @example [require bundled:scip]
   # The following defines a MixedIntegerLinearProgram together with a
   # linear objective on a rational line segment embedded in two-dimensional
   # space. 
   # > $l = new Polytope(INEQUALITIES=>[[0,1,0],[3/2,-1,0],[1,0,0]],EQUATIONS=>[[0,0,1]]);
   # > $obj = new Vector([0,-1,0]);
   # > $intvar = new Set<Int>([0,1,2]);
   # > $milp = $l->MILP(LINEAR_OBJECTIVE=>$obj, INTEGER_VARIABLES=>$intvar);
   # > print $milp->LINEAR_OBJECTIVE;
   # | 0 -1 0
   property LINEAR_OBJECTIVE : Vector<Scalar>;

   # Similar to [[MAXIMAL_VALUE]].
   # @example [require bundled:scip]
   # The following defines a MixedIntegerLinearProgram together with a
   # linear objective on a rational line segment embedded in two-dimensional
   # space. Note that the maximal value is integral and not the same as the
   # value of the objective function on any of the vertices.
   # > $l = new Polytope(INEQUALITIES=>[[0,1,0],[3/2,-1,0],[1,0,0]],EQUATIONS=>[[0,0,1]]);
   # > $obj = new Vector([0,-1,0]);
   # > $intvar = new Set<Int>([0,1,2]);
   # > $milp = $l->MILP(LINEAR_OBJECTIVE=>$obj, INTEGER_VARIABLES=>$intvar);
   # > print $milp->MINIMAL_VALUE;
   # | -1
   # @example [require bundled:scip]
   # Same as the previous example, but we do not require the first
   # coordinate to be integral anymore.
   # > $l = new Polytope(INEQUALITIES=>[[0,1,0],[3/2,-1,0],[1,0,0]],EQUATIONS=>[[0,0,1]]);
   # > $obj = new Vector([0,-1,0]);
   # > $intvar = new Set<Int>([0,2]);
   # > $milp = $l->MILP(LINEAR_OBJECTIVE=>$obj, INTEGER_VARIABLES=>$intvar);
   # > print $milp->MINIMAL_VALUE;
   # | -3/2
   property MINIMAL_VALUE : Scalar;
   
   # Similar to [[MAXIMAL_SOLUTION]]
   # @example [require bundled:scip]
   # The following defines a MixedIntegerLinearProgram together with a
   # linear objective for the centered square with side length 2 and asks for a
   # maximal solution:
   # > $c = new Vector([0, 1, -1/2]);
   # > $p = cube(2);
   # > $p->MILP(LINEAR_OBJECTIVE=>$c);
   # > print $p->MILP->MINIMAL_SOLUTION;
   # | 1 -1 1
   property MINIMAL_SOLUTION : Vector<Scalar>;
   
   # Maximum value the objective funtion takes under the restriction given by
   # [[INTEGER_VARIABLES]].
   # @example [require bundled:scip]
   # The following defines a MixedIntegerLinearProgram together with a
   # linear objective on a rational line segment embedded in two-dimensional
   # space. Note that the maximal value is integral and not the same as the
   # value of the objective function on any of the vertices.
   # > $l = new Polytope(INEQUALITIES=>[[0,1,0],[3/2,-1,0],[1,0,0]],EQUATIONS=>[[0,0,1]]);
   # > $obj = new Vector([0,1,0]);
   # > $intvar = new Set<Int>([0,1,2]);
   # > $milp = $l->MILP(LINEAR_OBJECTIVE=>$obj, INTEGER_VARIABLES=>$intvar);
   # > print $milp->MAXIMAL_VALUE;
   # | 1
   # @example [require bundled:scip]
   # Same as the previous example, but we do not require the first
   # coordinate to be integral anymore.
   # > $l = new Polytope(INEQUALITIES=>[[0,1,0],[3/2,-1,0],[1,0,0]],EQUATIONS=>[[0,0,1]]);
   # > $obj = new Vector([0,1,0]);
   # > $intvar = new Set<Int>([0,2]);
   # > $milp = $l->MILP(LINEAR_OBJECTIVE=>$obj, INTEGER_VARIABLES=>$intvar);
   # > print $milp->MAXIMAL_VALUE;
   # | 3/2
   property MAXIMAL_VALUE : Scalar;
   
   # Coordinates of a (possibly not unique) affine vertex at which the maximum
   # of the objective function is attained.
   # @example [require bundled:scip]
   # The following defines a MixedIntegerLinearProgram together with a
   # linear objective for the centered square with side length 2 and asks for a
   # maximal solution:
   # > $c = new Vector([0, 1, -1/2]);
   # > $p = cube(2);
   # > $p->MILP(LINEAR_OBJECTIVE=>$c);
   # > print $p->MILP->MAXIMAL_SOLUTION;
   # | 1 1 -1
   # @example [require bundled:scip]
   # The following defines a MixedIntegerLinearProgram together with a
   # linear objective on a rational line segment embedded in two-dimensional
   # space. Note that the maximal solution is not a vertex/endpoint of the line
   # segment.
   # > $l = new Polytope(INEQUALITIES=>[[0,1,0],[3/2,-1,0],[1,0,0]],EQUATIONS=>[[0,0,1]]);
   # > $obj = new Vector([0,1,0]);
   # > $intvar = new Set<Int>([0,1,2]);
   # > $milp = $l->MILP(LINEAR_OBJECTIVE=>$obj, INTEGER_VARIABLES=>$intvar);
   # > print $milp->MAXIMAL_SOLUTION;
   # | 1 1 0
   # @example [require bundled:scip]
   # Same as the previous example, but we do not require the first
   # coordinate to be integral anymore. Now the maximal solution is an endpoint
   # of the line segment.
   # > $l = new Polytope(INEQUALITIES=>[[0,1,0],[3/2,-1,0],[1,0,0]],EQUATIONS=>[[0,0,1]]);
   # > $obj = new Vector([0,1,0]);
   # > $intvar = new Set<Int>([0,2]);
   # > $milp = $l->MILP(LINEAR_OBJECTIVE=>$obj, INTEGER_VARIABLES=>$intvar);
   # > print $milp->MAXIMAL_SOLUTION;
   # | 1 3/2 0
   property MAXIMAL_SOLUTION : Vector<Scalar>;

   # Set of integers that indicate which entries of the solution should be
   # integral. If no value is specified, all entries are required to be
   # integral. If all entries should be rational, please use an
   # [[LinearProgram]] instead.
   # @example [require bundled:scip]
   # The following defines a MixedIntegerLinearProgram together with a
   # linear objective on a rational line segment embedded in two-dimensional
   # space. 
   # > $l = new Polytope(INEQUALITIES=>[[0,1,0],[3/2,-1,0],[1,0,0]],EQUATIONS=>[[0,0,1]]);
   # > $obj = new Vector([0,1,0]);
   # > $intvar = new Set<Int>([0,1,2]);
   # > $milp = $l->MILP(LINEAR_OBJECTIVE=>$obj, INTEGER_VARIABLES=>$intvar);
   # > print $milp->INTEGER_VARIABLES;
   # | {0 1 2}
   # @example [require bundled:scip]
   # Same as the previous example, but we do not require the first
   # coordinate to be integral anymore.
   # > $l = new Polytope(INEQUALITIES=>[[0,1,0],[3/2,-1,0],[1,0,0]],EQUATIONS=>[[0,0,1]]);
   # > $obj = new Vector([0,1,0]);
   # > $intvar = new Set<Int>([0,2]);
   # > $milp = $l->MILP(LINEAR_OBJECTIVE=>$obj, INTEGER_VARIABLES=>$intvar);
   # > print $milp->INTEGER_VARIABLES;
   # | {0 2}
   property INTEGER_VARIABLES : Set<Int>;

}


object Polytope {
   
   # @category Optimization
   # Mixed integer linear program applied to the polytope
   property MILP : MixedIntegerLinearProgram<Scalar> : multiple;

}


# Local Variables:
# mode: perl
# cperl-indent-level: 3
# indent-tabs-mode:nil
# End: